Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 61P
(a)
To determine
The work done, internal energy and heat absorbed by gas.
(b)
To determine
The work done, internal energy and heat absorbed by gas.
(c)
To determine
The work done.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An ideal gas initially at Pi, Vi and Ti follows a cycle, as illustrated in figure 2. (a) Find the net work done by the gas per cycle for 1.00 moles of gas initially at 0°C. (b) What is the net energy added by heat to gas per cycle
Please help me
i need the answer quickly
Chapter 18 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10P
Ch. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - Prob. 63PCh. 18 - Prob. 64PCh. 18 - Prob. 65PCh. 18 - Prob. 66PCh. 18 - Prob. 67PCh. 18 - Prob. 68PCh. 18 - Prob. 69PCh. 18 - Prob. 70PCh. 18 - Prob. 71PCh. 18 - Prob. 72PCh. 18 - Prob. 73PCh. 18 - Prob. 74PCh. 18 - Prob. 75PCh. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - Prob. 78PCh. 18 - Prob. 79PCh. 18 - Prob. 80PCh. 18 - Prob. 81PCh. 18 - Prob. 82PCh. 18 - Prob. 83PCh. 18 - Prob. 84PCh. 18 - Prob. 85PCh. 18 - Prob. 86PCh. 18 - Prob. 87PCh. 18 - Prob. 88PCh. 18 - Prob. 89PCh. 18 - Prob. 90PCh. 18 - Prob. 91PCh. 18 - Prob. 92PCh. 18 - Prob. 93PCh. 18 - Prob. 94PCh. 18 - Prob. 95PCh. 18 - Prob. 96PCh. 18 - Prob. 97PCh. 18 - Prob. 98P
Knowledge Booster
Similar questions
- A monatomic ideal gas undergoes a quasi-static process that is described by the function pV=p1+3(vv1) , where the stating state is (p1,v1) and the final state (p2,v2) . Assume the system consists of n moles of the gas in a container that can exchange heat with the environment and whose volume can change freely. (a) Evaluate the work done by the gas during the change in the state. (b) Find the change in internal energy of the gas. (c) Find the heat input to the gas during the change. (d) What ale initial and final temperatures?arrow_forwardTwo moles of a monatomic ideal gas such as oxygen is compressed adiabatically and reversibly from a state (3 atm, 5 L) to a state with a pressure of 4 atm. (a) Find the volume and temperature of the final state. (b) Find the temperature of the initial state. (c) Find work done by the gas in the process. (d) Find the change in internal energy in the process. Assume Cv=5R and Cp=Cv+R for the diatomic ideal gas in the conditions given.arrow_forwardOne process for decaffeinating coffee uses carbon dioxide ( M=44.0 g/mol) at a molar density of about 14,0 mol/m3 and a temperature of about 60 . (a) Is CO2 a solid, liquid, gas, or supercritical fluid under those conditions? (b) The van der Waals constants for carbon dioxide are a=0.3658 Pa m6/mol2 and b=4.286105 m3/mol. Using the van der Waals equation, estimate pressure of CO2 at that temperature and density. `arrow_forward
- A cylinder containing three moles of a monatomic ideal gas is heated at a constant pressure of 2 atm. The temperature of the gas changes from 300 K to 350 K as a result of the expansion. Find work done (a) on the gas; and (b) by the gas.arrow_forwardThe temperature of n moles of an ideal gas changes from T1 to T2 in a quasi-static adiabatic transition. Show that the work done by the gas is given by W=nR1(T1T2).arrow_forwardTwo moles of a monatomic ideal gas at (5 MPa, 5 L) is expanded isothermally until the volume is doubled (step 1). Then it is cooled isochorically until the pressure is 1 MPa (step 2). The temperature drops in this process. The gas isnow compressed isothermally until its volume is back to 5 L, but its pressure is now 2 MPa (step 3). Finally, the gas is heated isochorically to return to the initial state (step 4). (a) Draw the four processes in the pV plane. (b) Find the total work done by the gas.arrow_forward
- A monatomic ideal gas initially has a temperature of 330k and preassure of 3x105 Pa. The gas expands from a volume of 500cm3 to a volume of 1500cm3. Calculate the work done by the gas (in Joules) if the expansion is isothermal. Calculate the change in internal energy (in Joules), if the expansion is adiabatic. I know that the first two questions have the same results, but, why the work equals the change in internal energy? I know that in adiabatic expansion the work done equals the change in internal energy(which is negative). To calculate the work I could use the same formula as the first question, so, is that the reason for they to be equal? I was trying to calculate the result for the last question using the formula Δu = g/2*n*r*Δt, so, how can I find the change in internal energy considering this fomula and get to the same result?arrow_forwardThe state of an ideal gas of 1 mole changes from (Vo, Po, To) to (Vo+dV, Po+dp, To+dT) through a process in C,-C which the product pV remains constant, where v= d. and C is a constant. Show that the product Cy-C .ds T dT also remains constant.arrow_forwardAn ideal gas initially at pressure P0, volume V0, and temperature T0 is taken through the cycle described in the figure below. (Assume n=4 and m=7). (a) Find the net work done by the gas per cycle in terms of P0 and V0. (Substitute numeric values for n and m, do not use the variables n and m.)Wenv = (b) What is the net energy Q added to the system per cycle? (Use the following as necessary: P0 and V0.)Q = (c) Obtain a numerical value for the net work done per cycle for 1.00 mol of gas initially at 0°C. Hint: Recall that the work done by the system equals the area under a PV curve. In kj.arrow_forward
- A system consisting of 0.0538 moles of a diatomic ideal gas is taken from state A to state C along the path in the figure below. A pressure-volume graph is plotted on a coordinate plane, where the horizontal axis is V (L), and the vertical axis is P (atm). The path consists of two line segments: a segment from point A (2,0.300) to point B (2,0.800) a segment from point B (2,0.800) to point C (8,0.500) Arrows along the path are aligned such that their tails are closer to point A than are their tips. (a) How much work is done on the gas during this process? J(b) What is the lowest temperature of the gas during this process? KWhere does it occur? Point APoint B Point C (c) Find the change in internal energy of the gas in going from A to C. Hint: Adapt the equation (for the change in internal energy of a monatomic ideal gas) ΔU = 3 2 nRΔT = 3 2 Δ(PV) = 3 2 (PCVC − PAVA) to a diatomic ideal gas. J(d) Find the energy delivered to the gas in going from A to…arrow_forward(a) Calculate the internal energy of 1.95 moles of a monatomic gas at a temperature of 0°C. (b) By how much does the internal energy change if the gas is heated to 465 K?arrow_forwardA container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in a two-step process that increases the pressure by a factor of five and the volume by a factor of four. Determine the amount of energy transferred to the gas by heat if the first step is carried out at constant volume and the second step at constant pressure. (Use any variable or symbol stated above as necessary.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you