In the extrusion of cold chocolate from a tube, work is done on the chocolate by the pressure applied by a ram forcing the chocolate through the tube. The work per unit mass of extruded chocolate is equal to p/ρ , where p is the difference between the applied pressure and the pressure where the chocolate emerges from the tube, and ρ is the density of the chocolate, this work melts cocoa fats in the chocolate. These fats have a heat of fusion of 150 kJ/kg. Assume that all of the work goes into that melting and that these fats make up 30% of the chocolate’s mass. What percentage of the fats melt during the extrusion if p = 5.5 MPa and ρ = 1200 kg/m 3 ?
In the extrusion of cold chocolate from a tube, work is done on the chocolate by the pressure applied by a ram forcing the chocolate through the tube. The work per unit mass of extruded chocolate is equal to p/ρ , where p is the difference between the applied pressure and the pressure where the chocolate emerges from the tube, and ρ is the density of the chocolate, this work melts cocoa fats in the chocolate. These fats have a heat of fusion of 150 kJ/kg. Assume that all of the work goes into that melting and that these fats make up 30% of the chocolate’s mass. What percentage of the fats melt during the extrusion if p = 5.5 MPa and ρ = 1200 kg/m 3 ?
In the extrusion of cold chocolate from a tube, work is done on the chocolate by the pressure applied by a ram forcing the chocolate through the tube. The work per unit mass of extruded chocolate is equal to p/ρ, where p is the difference between the applied pressure and the pressure where the chocolate emerges from the tube, and ρ is the density of the chocolate, this work melts cocoa fats in the chocolate. These fats have a heat of fusion of 150 kJ/kg. Assume that all of the work goes into that melting and that these fats make up 30% of the chocolate’s mass. What percentage of the fats melt during the extrusion if p = 5.5 MPa and ρ = 1200 kg/m3?
What is the resistance (in (2) of a 27.5 m long piece of 17 gauge copper wire having a 1.150 mm diameter?
0.445
ΧΩ
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d.
Ag
dFe
= 2.47
×
Find the ratio of the diameter of silver to iron wire, if they have the same resistance per unit length (as they might in household wiring).
d
Ag
= 2.51
dFe
×
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.