Concept explainers
(a)
Maximum transverse displacement of the rope if
(a)
Answer to Problem 66PQ
The maximum transverse displacement of the rope if
Explanation of Solution
Write the general equation for the standing wave formed when two waves travelling in opposite direction superimposes each other.
Here,
Write the equation for the first wave function taking part in super position.
Write the equation for the second wave function taking part in super position.
Both the waves are travelling in the opposite direction. So after the overlap the resultant displacement is equal to the sum of displacements of individual waves.
Add equations (II) and (III) to get the resultant amplitude of the wave.
Substitute equations (II) and (III) in (IV).
For maximum value of
Rewrite equation (V) to get maximum displacement if
Here,
Conclusion:
Substitute
Therefore, the maximum transverse displacement of the rope if
(b)
Maximum transverse displacement of the rope if
(b)
Answer to Problem 66PQ
The maximum transverse displacement of the rope if
Explanation of Solution
Rewrite equation (V) to get maximum displacement if
Here,
Conclusion:
Substitute
Therefore, the maximum transverse displacement of the rope if
(c)
Location of the first three antinodes on the rope.
(c)
Answer to Problem 66PQ
The first antinode is located at
Explanation of Solution
Write the condition for occurrence of antinodes in the given wave.
Here,
Rearrange equation (V) to find
Here,
Rearrange equation (V) to find
Here,
Rearrange equation (V) to find
Here,
Conclusion:
Substitute
Substitute
Substitute
Therefore, the first antinode is located at
Want to see more full solutions like this?
Chapter 18 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning