Concept explainers
(a)
The wavelengths of fundemental and third harmonic before and after the addition of water.
(a)
Answer to Problem 50PQ
Value of fundamental wavelength with and without water will be the same and it is
Wavelength of third harmonic with and without water will be the same and it is
Explanation of Solution
Write the equation find the wavelength of first harmonic.
Here,
Note that there is no any term in the above equation which denotes the influence of medium which pipe is filled. It means that fundamental wavelength remain unchanged even the pipe is filled with water.
Write the equation find the wavelength of first harmonic.
Here,
The same explanation in the case of fundamental wavelength is applicable to this case also.. Wavelength of third harmonic remain unchanged even the pipe is filled with water.
Conclusion:
Substitute
Substitute
Therefore, value of fundamental wavelength with and without water will be the same and it is
Wavelength of third harmonic with and without water will be the same and it is
(b)
The frequencies of fundemental and third harmonic before and after the addition of water.
(b)
Answer to Problem 50PQ
Fundamental frequencies in air and water are
Third harmonic frequencies in air and water are
Explanation of Solution
Fundamental and third harmonic frequencies are function of speed of sound and it changes with medium. So, fundamental and third harmonic frequencies will be different in air and water.
Write the equation find the fundamental frequency in air.
Here,
Write the equation find the fundamental frequency in water.
Here,
Write the equation find the third harmonic frequency in air.
Here,
Write the equation find the third harmonic frequency in water.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore, fundamental frequencies in air and water are
Third harmonic frequencies in air and water are
(c)
Check whether lower pitched or high pitched sound will hear on tube is filled with water.
(c)
Answer to Problem 50PQ
High pitch sound will hear on tube is filled with water.
Explanation of Solution
Higher the pitch, higher will be the frequency of sound. Note that the frequency of sound when tube is filled with water is greater than that of tube filled with air. So the listener should hear higher pitch sound when the tube is filled with water.
Therefore, high pitch sound will hear on tube is filled with water.
Want to see more full solutions like this?
Chapter 18 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Please solvearrow_forwardPlease solvearrow_forwardA piece of silicon semiconductor has length L=0.01cm and cross-section in a square shape with an area of A=5×10−4cm2 . The semiconductor is doped with 1012cm−3 Phosphorus atoms and 1017cm−3 Boron atoms. An external electric field E=1.5×104N/C is applied to the silicon piece along the length direction, through the cross section. What is the total current in the silicon at T=300K? Assume the mobility of silicon is 1400cm2V−1s−1 for electrons and 450cm2V−1s−1 for holes, respectively. Assume the intrinsic carrier concentration in silicon is 1010cm−3 . Give your answer in mA, rounded to 3 significant figures. Just enter the number, nothing else.arrow_forward
- An impurity with a charge of 2e is placed in a three-dimensional metal. Assume that the Friedel sum rule holds for this system, and only the scattering phase shifts from the electrons contribute to this sum (we don't need to consider ion phase shifts). This metal has a spherical Fermi surface with Fermi wave vector kF . The only degeneracy for the electrons at the Fermi surface is spin (two-fold) and angular momentum ( 2l+1 for each angular momentum l ). Ignore scattering for l>2 and assume that the scattering doesn't depend on the spin degree of freedom. Denote the scattering phase shift at the Fermi wave vector in the l -th angular momentum channel as δl(kF) . If δ0(kF)=11π31 , and δ1(kF)=π29 , what is δ2(kF)? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardA pilot with a mass of 75 kg is flying an airplane at a true airspeed of 55m/s in air that is still relative to the ground. The pilot enters a coordinated turn of constant bank angle and constant altitude, and the pilot experiences an effective weight of 1471.5N normal to the wings of the plane. What is the rate of turn (in degrees per second) for the aircraft? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardImagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning