
a)
The heat transfer coefficient at the surface of the rib.
a)

Explanation of Solution
Given:
Mass of the rib
Initial temperature
Temperature maintained at the oven
Temperature at the center of the meat
Time taken to roast the rib
Calculation:
Write the given properties of the rib.
Calculate the radius of the roast
Calculate the Fourier number
The Fourier number is nearly close to 0.2
Calculate the dimensionless temperature of the roast
Solve Equation (I) by trial and error method using Table 18-2, Coefficients used in the one-term approximate solution of transient one-dimensional heat conduction in plane walls, cylinders, and spheres”.
Equation (I) is satisfied when the Biot number,
Calculate the heat transfer coefficient at the surface of the rib
Thus, the heat transfer coefficient at the surface of the rib is
b)
The temperature at the surface of the rib.
b)

Explanation of Solution
Calculation:
Calculate the temperature at the surface of the rib
Thus, the temperature at the surface of the rib is
c)
The amount of heat transferred to the rib.
c)

Explanation of Solution
Calculation:
Calculate the maximum amount of heat transferred to the rib
Calculate the amount of heat transferred to the rib
Thus, the amount of heat transferred to the rib is
d)
The time taken to cook the medium-done rib.
d)

Explanation of Solution
Calculation:
It is given that the innermost temperature of the rib is
Calculate the Fourier number
Calculate the time taken to cook the medium-done rib
Thus, the time taken to cook the medium-done rib is
The calculated cooking time
Want to see more full solutions like this?
Chapter 18 Solutions
Fundamentals of Thermal-Fluid Sciences
- Auto Controls Hand sketch the root Focus of the following transfer function How many asymptotes are there ?what are the angles of the asymptotes?Does the system remain stable for all values of K NO COPIED SOLUTIONSarrow_forward-400" 150" in Datum 80" 90" -280"arrow_forwardUsing hand drawing both of themarrow_forward
- A 10-kg box is pulled along P,Na rough surface by a force P, as shown in thefigure. The pulling force linearly increaseswith time, while the particle is motionless att = 0s untilit reaches a maximum force of100 Nattimet = 4s. If the ground has staticand kinetic friction coefficients of u, = 0.6 andHU, = 0.4 respectively, determine the velocityof the A 1 0 - kg box is pulled along P , N a rough surface by a force P , as shown in the figure. The pulling force linearly increases with time, while the particle is motionless at t = 0 s untilit reaches a maximum force of 1 0 0 Nattimet = 4 s . If the ground has static and kinetic friction coefficients of u , = 0 . 6 and HU , = 0 . 4 respectively, determine the velocity of the particle att = 4 s .arrow_forwardCalculate the speed of the driven member with the following conditions: Diameter of the motor pulley: 4 in Diameter of the driven pulley: 12 in Speed of the motor pulley: 1800 rpmarrow_forward4. In the figure, shaft A made of AISI 1010 hot-rolled steel, is welded to a fixed support and is subjected to loading by equal and opposite Forces F via shaft B. Stress concentration factors K₁ (1.7) and Kts (1.6) are induced by the 3mm fillet. Notch sensitivities are q₁=0.9 and qts=1. The length of shaft A from the fixed support to the connection at shaft B is 1m. The load F cycles from 0.5 to 2kN and a static load P is 100N. For shaft A, find the factor of safety (for infinite life) using the modified Goodman fatigue failure criterion. 3 mm fillet Shaft A 20 mm 25 mm Shaft B 25 mmarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





