Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 61P
To determine

The center temperature of the apples, the surface temperature of the apples and the amount of heat transfer from the apple.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

Diameter of the apples (D) is 9cm.

Initial temperature of the apple (Ti) is 20°C.

Temperature of the freezer (T) is 15°C.

Time taken to cool the apples (t) is 1h.

Convection heat transfer coefficient (h) is 8W/m2K.

Calculation:

Write the given properties of the apples.

  ρ=840kg/m3cp=3.81J/kgKk=0.418W/mKα=1.3×107m2/s

Calculate the Biot number (Bi).

  Bi=hr0k=h(D2)k=(8W/m2K)(0.045m)0.418W/mK=0.861

Refer Table 18-2, “Coefficients used in the one-term approximate solution of transient one-dimensional heat conduction in plane walls, cylinders, and spheres”, obtain the constants λ1 and A1 corresponding to the Biot number of 0.861.

  λ1=1.476A1=1.2390

Calculate the Fourier number (τ).

  τ=αtL2=(1.3×107m2/s)(1h)(0.045m)2=(1.3×107m2/s)(1×3600s)(0.045m)2=0.231

The Fourier number is greater than 0.2(0.231>0.2). Therefore, the one-term approximate solution is applicable.

Calculate the temperature at the center of the apples (T0).

  θ0,sph=A1eλ12τT0TTiT=A1eλ12τ

  T0(15°C)20°C(15°C)=(1.2390)e(1.476)2(0.231)=0.749

  T0=11.2°C

Thus, the center temperature of the apples is 11.2°C.

Calculate the temperature at the surface of the apples (T(r0,t)).

  θ(r0,t)sph=A1eλ12τ[sin(λ1r0r0)(λ1r0r0)]T(r0,t)TTiT=A1eλ12τ[sin(λ1r0r0)(λ1r0r0)]

  T(r0,t)(15°C)20°C(15°C)=(1.2390)e(1.476)2(0.231)[sin(1.476)(1.476)]=0.505

  T(r0,t)=2.7°C

Thus, the center temperature of the apples is 2.7°C.

Calculate the mass of the apples (m).

  m=ρV=ρ(43πr03)=(840kg/m3)(43π(0.045m)3)=0.3206kg

Calculate the maximum amount of heat transferred to the apples (Qmax).

  Qmax=mcp(TiT)=(0.3206kg)(3.81J/kgK)(20°C(15°C))=42.8kJ

Calculate the amount of heat transfer from the apple (Q).

  (QQmax)cyl=13(θ0,sph)(sinλ1λ1cosλ1λ13)=13(0.749)(sin(1.476)(1.476)cos(1.476)(1.476)3)=0.402

  Q=(0.402)Qmax=(0.402)(42.8kJ)=17.2kJ

Thus, the amount of heat transfer from the apple is 17.2kJ.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(10) A regular cross-section XXY mm beam, where X=84 m and Y=77 m and 1800 mm long, is loaded from above in the middle with a load of Z=2 kN causing a compressive Bending Stress at the top of the beam and tensile Bending Stress at the bottom of the beam. The beam in addition experiences a tensile end loading in order to reduce the compressive stress in the beam to a near zero value. The configuration of the beam is illustrated in Figure Q10. Calculate the end loading force required in order to reduce total compressive stress experienced in the beam to be near zero? State your answer to the nearest 1 decimal place in terms of kilo-Newtons. X mm Y mm ? KN Z KN Figure Q10 1800 mm ? KN
(13) A cylindrical beam of length 2 m and diameter of 120 mm, is arranged with a loading in the middle and two supports either end, as shown in Figure Q13. Given the shaft is made of metal which has a tensile strength of 350 MPa. Select the safest Factor of Safety (FOS) to 1 decimal place that the design engineer should work to. 100 kN ○ A. 1.2 ○ B. No Valid Answer ○ c. 1.1 O D.3.7 E. 0.8 2 m Figure Q13 120 mm
The pin-connected assembly consists of bronze rods (1) and (2) and steel rod (3). The bronze rods each have a diameter of 12mm and an elastic modulus of E=120GPa. The steel rod has a diameter of 18mm and an elastic modulus of E 210 GPa. Assume a= 2.0 m, b=1.5 m, and c = 2.0 m. What is the magnitude of load P that is necessary to displace point A 5mm to the left? a 5.52kN 17.05kN 5.05kN d 6.75kN Right answer need, no chatgpt,only handwritten

Chapter 18 Solutions

Fundamentals of Thermal-Fluid Sciences

Ch. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Consider a 1000-W iron whose base plate is made of...Ch. 18 - Metal plates (k = 180 W/m·K, ρ = 2800 kg/m3, and...Ch. 18 - A 5-mm-thick stainless steel strip (k = 21 W/m·K,...Ch. 18 - A long copper rod of diameter 2.0 cm is initially...Ch. 18 - Prob. 21PCh. 18 - Steel rods (ρ = 7832 kg/m3, cp = 434 J/kg·K, and k...Ch. 18 - Prob. 23PCh. 18 - The temperature of a gas stream is to be measured...Ch. 18 - Prob. 25PCh. 18 - A thermocouple, with a spherical junction diameter...Ch. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Carbon steel balls (ρ = 7833 kg/m3, k = 54 W/m·K,...Ch. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - A body at an initial temperature of Ti is brought...Ch. 18 - In a meat processing plant, 2-cm-thick steaks (k =...Ch. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - A long iron rod (ρ = 7870 kg/m3, cp = 447 J/kg·K,...Ch. 18 - Prob. 51PCh. 18 - A long 35-cm-diameter cylindrical shaft made of...Ch. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - A father and son conducted the following simple...Ch. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Citrus fruits are very susceptible to cold...Ch. 18 - Prob. 61PCh. 18 - Prob. 63PCh. 18 - Prob. 64PCh. 18 - Prob. 65PCh. 18 - White potatoes (k = 0.50 W/m·K and α = 0.13 × 10−6...Ch. 18 - Prob. 67PCh. 18 - Prob. 68PCh. 18 - Prob. 69PCh. 18 - Consider a hot semi-infinite solid at an initial...Ch. 18 - Prob. 71PCh. 18 - Prob. 72PCh. 18 - Prob. 73PCh. 18 - Prob. 74PCh. 18 - Prob. 75PCh. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - Prob. 78PCh. 18 - Prob. 79PCh. 18 - Prob. 81PCh. 18 - Prob. 82PCh. 18 - Prob. 83PCh. 18 - Prob. 84PCh. 18 - Prob. 85PCh. 18 - Prob. 86PCh. 18 - Prob. 88PCh. 18 - Prob. 89PCh. 18 - A 2-cm-high cylindrical ice block (k = 2.22 W/m·K...Ch. 18 - Prob. 91PCh. 18 - Prob. 93PCh. 18 - Prob. 94RQCh. 18 - Large steel plates 1.0-cm in thickness are...Ch. 18 - Prob. 96RQCh. 18 - Prob. 97RQCh. 18 - Prob. 98RQCh. 18 - Prob. 99RQCh. 18 - Prob. 100RQCh. 18 - Prob. 101RQCh. 18 - Prob. 102RQCh. 18 - The water main in the cities must be placed at...Ch. 18 - Prob. 104RQCh. 18 - Prob. 105RQCh. 18 - Prob. 106RQCh. 18 - Prob. 107RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license