Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 51E
To determine
At the end of period in main sequence, what happens to a very heavy star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the free-fall time of a 10 MSun main-sequence star?
O 100 hours
O 10 hours
O 1 hour
O 0.1 hours
Betelgeuse is a red giant at a distance of 428 light years. In the future it will become a
supernova similar to Tycho's supernova which was observed in 1572 and lies at a
distance of 9800 light years. At its peak, its brightness was similar to that of Venus
(which has a peak apparent magnitude of -4). What might we expect the peak apparent
magnitude of the Betelgeuse supernova explosion to be?
A red giant star might have radius = 104 times the solar radius,
and luminosity = 1730 times solar luminosity.
Use the data given below to calculate the temperature
at the surface of the red giant star.
Data:
solar radius R = 7 x 108 meters
solar luminosity L = 4 x 1026 watts
Stefan-Boltzmann constant
a = 5.67 x 10-8 W m² K-4
(in K)
A: 1226 OB: 1434 OC: 1678 OD: 1963 OE: 2297 OF: 2688 OG: 3145 OH: 3679
Chapter 18 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 18 - Prob. 1MCCh. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - Prob. 8MCCh. 18 - Prob. 9MCCh. 18 - Prob. 10MC
Ch. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - If we know both the luminosity and brightness of a...Ch. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - Prob. 21MCCh. 18 - Prob. 22MCCh. 18 - Prob. 23MCCh. 18 - Prob. 24MCCh. 18 - Prob. 25MCCh. 18 - Prob. 26MCCh. 18 - Prob. 27MCCh. 18 - Prob. 28MCCh. 18 - Prob. 29MCCh. 18 - Prob. 30MCCh. 18 - Prob. 31MCCh. 18 - Prob. 32MCCh. 18 - Prob. 33MCCh. 18 - Prob. 34MCCh. 18 - Prob. 35MCCh. 18 - Prob. 36MCCh. 18 - Prob. 37MCCh. 18 - Prob. 38MCCh. 18 - Prob. 39MCCh. 18 - Black holes are remnants of a. stars with small...Ch. 18 - Prob. 1ECh. 18 - Prob. 2ECh. 18 - Prob. 3ECh. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - Prob. 50ECh. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - Prob. 54ECh. 18 - Prob. 55ECh. 18 - How large are black holes? Can any star evolve...Ch. 18 - Prob. 57ECh. 18 - Prob. 58E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A star begins its life with a mass of 5 MSunbut ends its life as a white dwarf with a mass of 0.8 MSun. List the stages in the star’s life during which it most likely lost some of the mass it started with. How did mass loss occur in each stage?arrow_forwardAccording to the text, a star must be hotter than about 25,000 K to produce an H II region. Both the hottest white dwarfs and main-sequence O stars have temperatures hotter than 25,000 K. Which type of star can ionize more hydrogen? Why?arrow_forwardLook elsewhere in this book for necessary data, and indicate what the final stage of evolution-white dwarf, neutron star, or black hole-will be for each of these kinds of stars. A. Spectral type-O main-sequence star B. Spectral type-B main-sequence star C. Spectral type-A main-sequence star D. Spectral type-G main-sequence star E. Spectral type-M main-sequence stararrow_forward
- Describe the evolution of a star with a mass similar to that of the Sun, from the protostar stage to the time it first becomes a red giant. Give the description in words and then sketch the evolution on an HR diagram.arrow_forwardIn the H-R diagram we see that stellar masses__________ downward along the main sequence. At the upper end of the main sequence, the hot, luminous O stars can have masses as high as _________ or more times that of the Sun. On the lower end, cool, dim M stars may have as little as __________ times the mass of the Sun. Many more stars fall on the lower end of the main sequence than on the upper end, which tells us that _________stars are much more common than __________ stars.arrow_forwardFor the PP chain 0.7% of the mass participating in nuclear fusion is liberated as energy which produces a star's luminosity. Assume that the core of a main sequence star consists of 10% of its total mass. Hence, estimate the lifetime of a star on the main sequence in terms of its luminosity L/L. Give your answer in years. You may use the observed mass-luminosity relation L x M³.5, where M is the star's total mass. Using typical values, calculate estimates for the main sequence lifetime of a KO star and a 05 star. Describe briefly why your estimate might be more accurate for K stars compared to O stars.arrow_forward
- One way to calculate the radius of a star is to use its luminosity and temperature and assume that the star radiates approximately like a blackbody. Astronomers have measured the characteristics of central stars of planetary nebulae and have found that a typical central star is 16 times as luminous and 20 times as hot (about 110,000 K) as the Sun. Find the radius in terms of the Sun’s. How does this radius compare with that of a typical white dwarf?arrow_forwardPlace the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forwardThe flux received at the Earth from Supernova 1885 was 3.0182 x 10 10 W/m². The luminosity of the supernova is 6 x 10° Lo (or 6 x 10° solar luminosities). What is the distance to the supernova in parsecs? Take 1 pc = 3.0857 x 1016 m and Lo= 3.828 x 1026 w. d = pcarrow_forward
- Match the spectral type and luminosity class to theletters shown on the Hertzsprung-Russell diagram 1) A WD (White Dwarf)2) G V (Main Sequence) 3) M V (Main Sequence)4) M I (Supergiant)5) G III (Giant)arrow_forwardQUESTION 16 Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in decreases in until it makes a turn towards the main sequence, as it follows its evolutionary track. Protostars of different masses follow diferent paths on their way to the main sequence. 107 Luminosity (L) 10 105 10 107 10² 101 1 10-1 10-2 10-3 Spectral type 0.01 R 0.001 Re 60 M MAIN SEQUENCE 40,000 30,000 20 Mau 10 Mgun 5 Mun 0.1 Run Ren radius; temperature luminosity; radius 3 Min. 05 BO temperature; luminosity Oluminosity: temperature radius: luminosity 1 M 10,000 6000 Surlace temperature (K) 1,000 Rs 2 M STAR L 0.8 M B5 AO FOGO КБ МБ -10 +10 3000 Absolute visual magnitude andarrow_forwardUsing solar units, we find that a star has 4 times the luminosity of the Sun, a mass 1.25 times the mass of the Sun, and a surface temperature of 4090 K (take the Sun's surface temperature to be 5784 K for the sake of this problem). This means the star has a radius of.................... solar radii and is a .................... star (use the classification).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning