Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 39E
To determine
The reason most of the stars are in the main sequence of the H-R diagram.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An O8 V star has an apparent visual magnitude of +5. Use the method of spectroscopic parallax to estimate the distance to the star (in pc). (Hints: Refer to one of the H–R diagrams in the chapter, and use the magnitude–distance formula,
d = 10(mV − MV + 5)/5
where d is the distance in parsecs, mV and MV are the apparent and absolute visual magnitude respectively.)
On a H-R diagram for main sequence stars, as temperature increases, brightness usually increases
True
False
Physics written by hand.
Chapter 18 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 18 - Prob. 1MCCh. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - Prob. 8MCCh. 18 - Prob. 9MCCh. 18 - Prob. 10MC
Ch. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - If we know both the luminosity and brightness of a...Ch. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - Prob. 21MCCh. 18 - Prob. 22MCCh. 18 - Prob. 23MCCh. 18 - Prob. 24MCCh. 18 - Prob. 25MCCh. 18 - Prob. 26MCCh. 18 - Prob. 27MCCh. 18 - Prob. 28MCCh. 18 - Prob. 29MCCh. 18 - Prob. 30MCCh. 18 - Prob. 31MCCh. 18 - Prob. 32MCCh. 18 - Prob. 33MCCh. 18 - Prob. 34MCCh. 18 - Prob. 35MCCh. 18 - Prob. 36MCCh. 18 - Prob. 37MCCh. 18 - Prob. 38MCCh. 18 - Prob. 39MCCh. 18 - Black holes are remnants of a. stars with small...Ch. 18 - Prob. 1ECh. 18 - Prob. 2ECh. 18 - Prob. 3ECh. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - Prob. 50ECh. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - Prob. 54ECh. 18 - Prob. 55ECh. 18 - How large are black holes? Can any star evolve...Ch. 18 - Prob. 57ECh. 18 - Prob. 58E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How do stars typically “move” through the main sequence band on an HR diagram? Why?arrow_forwardUse the data in Appendix J to plot an HR diagram for the brightest stars. Use the data from Table 18.3 to show where the main sequence lies. Do 90% of the brightest stars lie on or near the main sequence? Explain why or why not.arrow_forwardObservations show that stellar luminosity, L, and mass, M, are related by L x M3.5 for main sequence stars. Obtain an expression that relates the main sequence life time and the mass of a star. You should assume that the luminosity is constant throughout a star's main sequence life time, and that the amount of mass converted into energy by a star while it is on the main sequence is given by AM main sequence life time of a 20 Solar mass star given that the Sun is expected to spend 1010 years on the main sequence. Comment on the significance of your answer. fM, where f is a constant. Estimate thearrow_forward
- What causes a star to move off the main sequence?arrow_forwardQuestion 32 Consider three Main Sequence stars, an O tar, an F star and a K star, each with an apparent magnitude of 2. Which star is the most luminous? They're all the same luminosity. The O star The F star The K star Question 33 Consider three Main Sequence stars, an O star, an F star and a K star, each with an apparent magnitude of 2. Which star appears the brightest in the night sky? The O star The F star O The K star O They all appear the same. Please answer botharrow_forwardDescribe the forces acting on a star during the main sequence period of its life?arrow_forward
- Which letter on the diagram represents Red Giants?arrow_forwardIf the main-sequence mass lower limit is 0.08 solar mass and the brightest main-sequence stars are 1 million times more luminous than the Sun, what is the mass range along the main sequence in the figure below? (answer in solar masses)arrow_forward12: A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: 36.854 13:This star has a mass of 3.3 MSun. what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Please answer question 13 thank you.arrow_forward
- Consider two stars on the main sequence, A and B. Star A has a mass of Мо Star B has a mass of 0.2 Мо By what factor is the luminosity of star A greater than the luminosity of star В? [Hint: use the proportionality relations for mass, luminosity, or lifetime for stars on the main sequence.]arrow_forwardThe mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙. If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forwarda) A star has a temperature T = 15000K, mass M = 0.25M⊙ and luminosity L = 0.02L⊙. Sketch the position of this star on the Hertzsprung-Russell diagram relative to the main sequence.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning