Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
5th Edition
ISBN: 9781305084766
Author: Saeed Moaveni
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 4P
In Chapter 12, we explained that the electric power consumption of various electrical components can be determined using the following power formula: P = VI = RI2 where P is power in watts, V is the voltage, I is the current in amps, and R is the resistance of the component in ohms.
Plot the power consumption of an electrical component with a resistance of 145 ohms. Vary the value of the current from zero to 4 amps. Discuss and plot the change in power consumption as the function of current drawn through the component.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We explained that the electric power consumption of various electricalcomponents can be determined using the following power formula: P = VI = RI2 where P is power in watts, V is the voltage, I is the current in amps, and R is the resistance of the component in ohms.Plot the power consumption of an electrical component with a resistance of 145 ohms. Vary the value of the current from zero to 4 amps. Discuss and plot the change in power consumption as the function of current drawn through the component.
The electric resistance of a light bulb is 145 Ω . Determine the value of currentflowing through the lamp when it is connected to a 120-volt source.Using Ohm’s law, as shown , we have
V = RI
I = V/R = 120/145 = 0.83 A
In a certain region of space, the electric potential varies along an x-axis as shown in the figure below. The scale of the vertical axis is set
by V, 24000 V. Find the x-component of the electric field in the interval ef.
i
V/m
V(V)
C 号
d
-5
0
-V
g
h
x (m)
Chapter 18 Solutions
Engineering Fundamentals: An Introduction to Engineering (MindTap Course List)
Ch. 18.2 - Prob. 1BYGCh. 18.2 - Prob. 2BYGCh. 18.2 - Prob. 3BYGCh. 18.2 - Prob. 4BYGCh. 18.2 - Prob. BYGVCh. 18.3 - Prob. 1BYGCh. 18.3 - Prob. 2BYGCh. 18.3 - Prob. 3BYGCh. 18.3 - Prob. BYGVCh. 18.4 - Prob. 1BYG
Ch. 18.4 - Prob. 2BYGCh. 18.4 - Prob. 3BYGCh. 18.4 - Prob. 4BYGCh. 18.4 - Prob. BYGVCh. 18.5 - Prob. 1BYGCh. 18.5 - Prob. 2BYGCh. 18.5 - Prob. 3BYGCh. 18.5 - Prob. 4BYGCh. 18.5 - Prob. BYGVCh. 18.6 - Prob. 1BYGCh. 18.6 - Prob. 2BYGCh. 18.6 - Prob. 3BYGCh. 18.6 - Prob. 4BYGCh. 18.6 - Prob. BYGVCh. 18.7 - Prob. 1BYGCh. 18.7 - Prob. 2BYGCh. 18.7 - Prob. BYGVCh. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - In Chapter 12, we explained that the electric...Ch. 18 - The deflection of a cantilevered beam supporting...Ch. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - A jet plane taking off creates a noise with a...Ch. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- L T x Parrow_forwardDraw a sketch of the Maxwell model and label all components. Draw a graph showing displacement versus time when the model is subjected to a constant force for a time period t and then released. Comment on why the model responds this way.arrow_forwardRequired information Sometimes equations can be developed and practical problems solved by knowing nothing more than the dimensions of the key parameters. For example, consider the heat loss through a window in a building. Window efficiency is rated in terms of R value, which has the unit of ft2-hr-°F/Btu. A certain manufacturer offers a double-pane window with R=2.5 and also a triple-pane window with R= 3.4. Both windows are 3.5 ft by 5 ft. On a given winter day, the temperature difference between the inside and outside is 45°F. Develop an equation for window heat loss Q in time period At as a function of window area A, R value, and temperature difference AT.arrow_forward
- Required information Sometimes equations can be developed and practical problems solved by knowing nothing more than the dimensions of the key parameters. For example, consider the heat loss through a window in a building. Window efficiency is rated in terms of R value, which has the unit of ft2-hr-°F/Btu. A certain manufacturer offers a double-pane window with R=2.5 and also a triple-pane window with R= 3.4. Both windows are 3.5 ft by 5 ft. On a given winter day, the temperature difference between the inside and outside is 45°F. How much heat is lost through the triple-pane window? 231.61 Btuarrow_forward14.11. As we explained in Chapter 7, the air resistance to motion of a vehicle is something important that engineers investigate. As you may also know, the drag force acting on a car is determined experimentally by placing the car in a wind tunnel. The air speed inside the tunnel is changed, and the drag force acting on the car is measured. For a given car, the experimental data is generally represented by a single coefficient that is called drag coefficient. It is defined by the following relationship: Fa Cả where Ca = drag coefficient (unitless) Fa = measured drag force (N or 1b) p= air density (kg/m³ or slugs/ft') V = air speed inside the wind tunnel (m/s or ft/s) A = frontal area of the car (m? or ft') The frontal area A represents the frontal projection of the car's area and could be approximated simply by multiplying 0.85 times the width and the height of a rectangle that outlines the front of a car. This is the area that you see when you view the car from a direction normal to…arrow_forward(d) A round bar shown in Figure 2b is mounted on the end of a motor shaft at its central fixing point. The bar is used to provide an aerodynamic load on the motor. By assuming that the air flow around the shaft is everywhere turbulent, calculate the power absorption by the shaft for a rotational speed of 2000 revolutions per minute. The geometry is d=0.1m, L=1.0m. Explain any assumptions that you make and justify all parameter choices. L/2 d O Central fixing Figure2b: Power Absorption Bararrow_forward
- A particle of mass 0.128 kg is rotating at 1170 rpm at a radius of 185 mm. At t=2.2s the radius begins to expand at a rate of 32 mm.s Answer all questions to at least 3 significant figures. Enter your numerical answers in SI units but do not enter the units. What is the radial force at t=2.1s [N] What is the arc length traveled by the mass at t=2.1 s? [m] What is the transverse force on the mass at t=4.4s? [N]arrow_forwardA rigid bar of weight W = 815 Ib hangs from three equally spaced wires-two of steel and one of aluminum (see figure). The diameter of the wires is W = 815 lb What temperature increase AT (in °F) in all three wires will result in the entire load being carried by the steel wires? Before the wires were loaded with W and before the temperature increase AT, all three wires had the same length. (Assume E, = 30 x 106 psi, a. = 6.5 x 10-6/°F, and a = 12 x 10-6/0F.) oFarrow_forwardFluid Mechanicsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
02 - Overview of Circuit Components - Resistor, Capacitor, Inductor, Transistor, Diode, Transformer; Author: Math and Science;https://www.youtube.com/watch?v=RHpo4wKo8pQ;License: Standard Youtube License