College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 45P
To determine
The power supplied by the axon.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 14
Consider the model of the axon as a capacitor from Figure P18.43. (a) How much energy doesit take to restore the inner wall of the axon to -7.0 x 10-2 V,starting from +3.0 x 10-2 V? (b) Find the average current inthe axon wall during this process.
A myelinated axon conducts nerve impulses at a speed of 40 m/s. What is the signal speed if the thickness of the myelin sheath is halved but no other changes are made to the axon?
Chapter 18 Solutions
College Physics:
Ch. 18.1 - True or False: While discharging, the terminal...Ch. 18.1 - Why does a battery get warm while in use?Ch. 18.2 - In Figure 18.5, the current is measured with the...Ch. 18.2 - The circuit in Figure 18.5 consists of two...Ch. 18.3 - In Figure 18.8, the current is measured with the...Ch. 18.3 - When the switch is open in Figure 18.8, power Po...Ch. 18.3 - Suppose you have three identical lightbulbs, some...Ch. 18.3 - If the lightbulbs in Quick Quiz 18.7 are connected...Ch. 18.5 - The switch is closed in Figure 18.20. After a long...Ch. 18 - Choose the words that make each statement correct....
Ch. 18 - Given three lightbulbs and a battery, sketch as...Ch. 18 - Suppose the energy transferred to a dead battery...Ch. 18 - A short circuit is a circuit containing a path of...Ch. 18 - Electric current I enters a node with three...Ch. 18 - If electrical power is transmitted over long...Ch. 18 - The following statements are related to household...Ch. 18 - Two sets of Christmas lights are available. For...Ch. 18 - Why is it possible for a bird to sit on a...Ch. 18 - An uncharged series RC circuit is to be connected...Ch. 18 - Suppose a parachutist lands on a high-voltage wire...Ch. 18 - A ski resort consists of a few chairlifts and...Ch. 18 - Embodied in Kirchhoffs rules are two conservation...Ch. 18 - Why is it dangerous to turn on a light when you...Ch. 18 - A battery haring an emf of 9.00 V delivers 117 mA...Ch. 18 - Prob. 2PCh. 18 - A battery with an emf of 12.0 V has a terminal...Ch. 18 - A battery with a 0.100- internal resistance...Ch. 18 - Two resistors, R1 and R2 are connected in series....Ch. 18 - Three 9.0- resistors are connected in series with...Ch. 18 - (a) Find the equivalent resistance between points...Ch. 18 - Consider the combination of resistors shown in...Ch. 18 - Prob. 9PCh. 18 - Consider the circuit shown in Figure P18.10. (a)...Ch. 18 - Consider the circuit shown in Figure P18.11. Find...Ch. 18 - Four resistors are connected to a battery as shown...Ch. 18 - The resistance between terminals a and b in Figure...Ch. 18 - A battery with = 6.00 V and no internal...Ch. 18 - Find the current in the 12- resistor in Figure...Ch. 18 - (a) Is it possible to reduce the circuit shown in...Ch. 18 - (a) You need a 45- resistor, but the stockroom has...Ch. 18 - (a) Find the current in each resistor of Figure...Ch. 18 - Figure P18.19 shows a Wheatstone bridge, a circuit...Ch. 18 - For the circuit shown in Figure P18.20, calculate...Ch. 18 - Taking R = 1.00 k and = 250 V in Figure P18.21,...Ch. 18 - In the circuit of Figure P18.22, the current I1 is...Ch. 18 - In the circuit of Figure P18.23, determine (a) the...Ch. 18 - Four resistors are connected to a battery with a...Ch. 18 - Using Kirchhoffs rules (a) find the current in...Ch. 18 - Figure P18.26 shows a voltage divider, a circuit...Ch. 18 - (a) Can the circuit shown in Figure P18.27 be...Ch. 18 - A dead battery is charged by connecting it to the...Ch. 18 - (a) Can the circuit shown in Figure P18.29 be...Ch. 18 - For the circuit shown in Figure P18.30, use...Ch. 18 - Find the potential difference across each resistor...Ch. 18 - Show that = RC has units of time.Ch. 18 - Consider the series RC circuit shown in Figure...Ch. 18 - An uncharged capacitor and a resistor are...Ch. 18 - Consider a series RC circuit as in Figure P18.35...Ch. 18 - The RC charging circuit in a camera flash unit has...Ch. 18 - Figure P18.37 shows a simplified model of a...Ch. 18 - The capacitor in Figure P18.35 is uncharged for t ...Ch. 18 - What minimum number of 75-W light bulbs must be...Ch. 18 - A 1 150-W toaster and an 825-W microwave oven are...Ch. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Assume a length of axon membrane of about 0.10 m...Ch. 18 - Consider the model of the axon as a capacitor from...Ch. 18 - Prob. 45PCh. 18 - How many different resistance values can be...Ch. 18 - (a) Calculate the potential difference between...Ch. 18 - For the circuit shown in Figure P18.48, the...Ch. 18 - Figure P18.49 shows separate series and parallel...Ch. 18 - Three 60.0-W, 120-V lightbulbs are connected...Ch. 18 - When two unknown resistors are connected in series...Ch. 18 - The circuit in Figure P18.52a consists of three...Ch. 18 - A circuit consists of three identical lamps, each...Ch. 18 - The resistance between points a and b in Figure...Ch. 18 - The circuit in Figure P18.55 has been connected...Ch. 18 - Prob. 56APCh. 18 - The student engineer of a campus radio station...Ch. 18 - The resistor R in Figure P18.58 dissipates 20 W of...Ch. 18 - A voltage V is applied to a series configuration...Ch. 18 - For the network in Figure P18.60, show that the...Ch. 18 - A battery with an internal resistance of 10.0 ...Ch. 18 - The circuit in Figure P18.62 contains two...Ch. 18 - An electric eel generates electric currents...Ch. 18 - In Figure P18.64, R1 = 0.100 , R2 = 1.00 , and R3...Ch. 18 - What are the expected readings of the ammeter and...Ch. 18 - Consider the two arrangements of batteries and...Ch. 18 - The given pair of capacitors in Figure P18.67 is...Ch. 18 - 2.00-nF capacitor with an initial charge of 5.10 C...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume the length of an axon membrane of about 0.10 cm is excited by an action potential (length excited = nerve speed ✕ pulse duration = 50 m/s ✕ 2.0 ms = 10 cm). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ??oA/d and Q = CΔV to investigate the charge as follows. Use typical values for a cylindrical axon of cell thickness d = 1.6 ✕ 10−8 m, axon radius r = 1.2 ✕ 101 ?m, and cell-wall dielectric constant ? = 2.3. A diagram shows a collection of positive and negative charges in and around an axon. The diagram is divided into three sections, one on top of the other. The top section is labeled "External fluid". A row of positive charges labeled "Positive charge layer" lies along the bottom side of this section. Above the row of positive charges, there is an even mixture of…arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential length excited = nerve speed × pulse duration = 50.0 m/s × 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with k* ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ke,A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.4 x 10-8 m, axon radius r = 1.4 x 101 um, and cell-wall dielectric constant k = 2.2.arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration = 50.0 m/s x 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = K² A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 2.0 x 10-8 m, axon radius r = 1.6 x 10¹ μm, and cell-wall dielectric constant k = 2.9. Positive charge layer Negative charge layer External fluid Axon wall membrane Internal fluid - Axon radius= d -2 (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 x 10-² v.) 9.03E-10 C How many K+ ions are on the outside of the axon assuming an…arrow_forward
- Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration = 50.0 m/s x 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = KE A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.8 x 10-8 m, axon radius r = 1.4 × 10¹ μm, and cell-wall dielectric constant x = 2.0. Positive charge layer Negative charge layer 1+ External fluid + + + Axon wall membrane + Internal fluid Axon radius = r + + + d + (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 x 10-² V.) How many K+ ions are on the outside of the axon assuming…arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration = 50.0 m/s x 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ke A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 2.0 × 10-8 m, axon radius r = 1.6 × 10¹ µm, and cell-wall dielectric constant x = 2.9. Positive charge layer Negative charge layer External fluid Axon wall membrane Internal fluid Axon radius = r No + (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 x 10-² v.) d Your response differs significantly from the correct answer. Rework your…arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration = 50.0 m/s x 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = KE A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.3 x 10-8 m, axon radius r = 1.3 × 10¹ μm, and cell-wall dielectric constant x = 2.1. Positive charge layer Negative charge layer External fluid + Axon wall membrane Internal fluid Axon radius = r + + How many sodium ions (Na+) is this? Na+ ions + (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 x 10-² V.) C How many K+ ions are on…arrow_forward
- Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed × pulse duration = 50.0 m/s × 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ??0A/d and Q = CΔV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.6 ✕ 10−8 m, axon radius r = 1.9 ✕ 101 ?m, and cell-wall dielectric constant ? = 2.6. (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 ✕ 10−2 V.)?CHow many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 ✕ 10−2 V??K+ ions (b) How much positive charge must flow through the cell membrane to reach…arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed × pulse duration = 50.0 m/s × 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ??0A/d and Q = CΔV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.1 ✕ 10−8 m, axon radius r = 2.0 ✕ 101 ?m, and cell-wall dielectric constant ? = 2.7. A diagram shows a collection of positive and negative charges in and around an axon. The diagram is divided into three sections, one on top of the other. The top section is labeled "External fluid". A row of positive charges labeled "Positive charge layer" lies along the bottom side of this section. Above the row of positive charges, there is an even mixture of…arrow_forwardplease helparrow_forward
- a) What was the smallest voltage required to produce a contraction (the threshold voltage)? What proportion of the fibers in the muscle do you think were contracting to produce this small response? b) What was the smallest voltage required to produce the maximum (largest) contraction? What proportion of the fibers in the muscle do you think were contracting to produce this maximal response?arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration 50.0 m/s x 0.0020 s = 0.10 m). In the %D resting state, the outer surface of the axon wall is charged positively with Kt ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = KƐ A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell -8 wall thickness d = 1.5 x 10 m, axon radius r = 2.0 x 10- um, and cell-wall dielectric constant K = 2.9. External fluid + Positive charge layer Axon wall membrane d Negative charge layer Internal fluid Axon radius = r (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 x 10-2 v.) 1.035E-9 Your response differs from the correct answer by more than 10%.…arrow_forwardAn unmyelinated segment of the axon has a radius of r-2 um and a length of L=5 cm. what is its membrane capacitance (Farad) ?. (The capacitance per unit area, C = 0.01 F/m?). A. 0.00000000628 B. 0.00000002512 C. 0.00000001884 D. 0.00000001256 E. Nonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY