EBK CHEMISTRY: AN ATOMS FIRST APPROACH
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
2nd Edition
ISBN: 9780100552234
Author: ZUMDAHL
Publisher: YUZU
Question
Book Icon
Chapter 18, Problem 45E
Interpretation Introduction

Interpretation: The binding of carbon- 12 and uranium- 235 is to be calculated. Justification of whether the binding energy per nucleon of 56Fe be greater or smaller than that of 12C or 235U is to be stated.

Concept introduction: The sum of masses of the component nucleons and the actual mass of a nucleus is known as the mass defect and it can be used to calculate the nuclear binding energy.

To determine: The binding energy per nucleon of carbon- 12 and uranium- 235 .

Expert Solution & Answer
Check Mark

Answer to Problem 45E

Answer

The binding of carbon- 12 is -1.23×10-12J/nucleon_ The binding of uranium- 235 is -1.21673×10-12J/nucleon_ The binding energy per nucleon for 56Fe is larger than 12C or 235U .

Explanation of Solution

Explanation

Given

The atomic mass of 612C is 12.000amu .

Mass of 11H 1.00782amu .

The mass of neutron is 1.00866amu .

Number of protons in 612C=6

Number of neutrons in 612C=6

Mass defect is calculated by the formula,

Δm=Atomicmassof612Cnucleus[Numberofprotons×Massof11HprotonNumberofneutrons×Massofneutron]

Substitute the value of the atomic mass 612C , the number of protons and mass of the 11H proton and that of the neutron in the above equation.

Δm=12.000[(6×1.0078)+(6×1.00866)]Δm=12.0006.04696.05196Δm=12.00012.09888Δm=0.09888amunucleus

The conversion of amu/nucleus to Kg/nucleus is done as,

1amu=1.66×1027Kg

Therefore, the conversion of 0.589amu/nucleus into kg/nucleus is,

0.09888amu/nucleus=(0.09888×1×1.66×1027)kg/nucleus=-0.1641408×10-27Kg/nucleus_

Therefore, the mass defect (Δm) of 612C is -0.1641408×10-27Kg/nucleus_ .

Explanation

The binding energy per nucleon is calculated by Einstein’s mass energy equation, that is,

ΔE=ΔmC2

Where,

  • ΔE is the change in energy.
  • Δm is the change in mass.
  • C is the velocity of light.

Substitute the values of Δm and C in the equation.

ΔE=ΔmC2ΔE=(0.1641408×10-27kgnucleus)(3×108ms)2ΔE=-1.477×10-11J/nucleus_

Therefore, the energy released per nucleus is -1.477×10-11J/nucleus_ .

Explanation

The binding energy per nucleon is calculated by the formula,

Binding energy per nucleon=Bindingenergy per nucleusNumberofprotons+Numberofneutrons

Substitute the value of the binding energy per nucleus, the number of protons and the number of neutrons in the above equation.

Binding energy per nucleon=Bindingenergy per nucleus(Numberofprotons+Numberofneutrons)=1.477×101112J/nucleon=-1.23×10-12J/nucleon_

Explanation

The atomic mass of 92235U 235.0439amu .

Mass of 11H 1.00782 amu .

The mass of neutron is 1.00866amu

Number of protons in 92235U=92

Number of neutrons in 92235U=143

The mass defect of 92235U is calculated by the formula,

Δm=Mass of 92235Unucleus [Numberofprotons×massof11HprotonNumberofneutrons×massofneutron]

Substitute the value of the mass 92235U , the number of protons and mass of the 11H proton and that of the neutron in the above equation.

Δm=235.0439[(92×1.00782)+(143×1.00866)]Δm=235.043992.7194144.2383Δm=1.91388amu/nucleus

The conversion of amu/nucleus to Kg/nucleus is done as,

1amu=1.66×1027Kg

Therefore, the conversion of 0.589amu/nucleus into kg/nucleus is,

1.91388amu/nucleu=(1.9138×1×1.66×1027)kg/nucleus=-3.17704×10-27Kg/nucleus_

The mass defect (Δm) of 92235U is. -3.17704×10-27Kg/nucleus_ .

Explanation

The binding energy per nucleon is calculated by Einstein’s mass energy equation, that is,

ΔE=ΔmC2

Where,

  • ΔE is the change in energy.
  • Δm is the change in mass.
  • C is the velocity of light.

Substitute the values of Δm and C in the equation.

ΔE=Δm.c2ΔE=(3.17704×1027Kg/nucleus)(3×108ms)2ΔE=28.5933×1011J/nucleus

Therefore, the energy released per nucleus is 28.5933×1011J/nucleus

The binding energy per nucleon is calculated by the formula,

Binding energy per nucleon=Bindingenergy per nucleusNumberofprotons+Numberofneutrons

Substitute the value of the binding energy per nucleus, the number of protons and the number of neutrons in the above equation.

Binding energy per nucleon=Bindingenergy per nucleus(Numberofprotons+Numberofneutrons)=28.5933×1011235J/nucleon=-1.21673×10-12J/nucleon_

The mass defect (Δm) of 56Fe is. -0.8779×10-27Kg/nucleus_

Explanation

The atomic mass of 56Fe=55.9349amu .

Mass of 11H=1.00782 amu .

The mass of neutron is 1.00866amu .

Number of protons in 56Fe=26

Number of neutrons in 56Fe=30

The mass defect is calculated by the formula,

Δm=Mass of 56Fe [Numberofprotons×massof11HprotonNumberofneutrons×massofneutron]

Substitute the value of the mass 56Fe  , the number of protons and mass of the 11H proton and that of the neutron in the above equation.

Δm=55.9349[(26×1.00782)+(30×1.00866)]Δm=0.589amu/nucleus

The conversion of amu/nucleus to Kg/nucleus is done as,

1amu=1.66×1027Kg

Therefore, the conversion of 0.589amu/nucleus into kg/nucleus is,

0.5289amu/nucleus=(0.5289×1×1.66×1027)kg/nucleus=-0.8779×10-27Kg/nucleus_

Therefore, the mass defect (Δm) of 56Fe is -0.8779×10-27Kg/nucleus_ .

Explanation

The binding energy per nucleon is calculated by Einstein’s mass energy equation, that is,

ΔE=ΔmC2

Where,

  • ΔE is the change in energy.
  • Δm is the change in mass.
  • C is the velocity of light.

Substitute the values of Δm and C in the equation.

ΔE=Δmc2ΔE=(0.8779×1027kgnucleus)(3×108ms)2ΔE=7.90×1011J/nucleus

Therefore, the energy released per nucleus is 7.90×1011J/nucleus .

The binding energy per nucleon is calculated by the formula,

Binding energy per nucleon=Bindingenergy per nucleusNumberofprotons+Numberofneutrons

Substitute the value of the binding energy per nucleus, the number of protons and the number of neutrons in the above equation.

Binding energy per nucleon=Bindingenergy per nucleus(Numberofprotons+Numberofneutrons)=7.90×101156J/nucleon=14.10×10-13J/nucleon_

Conclusion

Conclusion

The binding of carbon- 12 is -1.23×10-12J/nucleon_ The binding of uranium- 235 is -1.21673×10-12J/nucleon_ The binding energy per nucleon for 56Fe is larger than 12C or 235U .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 18 Solutions

EBK CHEMISTRY: AN ATOMS FIRST APPROACH

Ch. 18 - Prob. 1QCh. 18 - Prob. 2QCh. 18 - Prob. 3QCh. 18 - Prob. 4QCh. 18 - Prob. 5QCh. 18 - Prob. 6QCh. 18 - Prob. 7QCh. 18 - Prob. 8QCh. 18 - Prob. 9QCh. 18 - Prob. 10QCh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - Prob. 50ECh. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - A chemist studied the reaction mechanism for the...Ch. 18 - Prob. 55ECh. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Prob. 58ECh. 18 - Prob. 59AECh. 18 - Prob. 60AECh. 18 - Prob. 61AECh. 18 - Prob. 62AECh. 18 - Prob. 63AECh. 18 - Prob. 64AECh. 18 - Prob. 65AECh. 18 - Prob. 66AECh. 18 - Prob. 67AECh. 18 - Prob. 68AECh. 18 - Prob. 69AECh. 18 - Prob. 70AECh. 18 - Prob. 71AECh. 18 - Prob. 72AECh. 18 - Prob. 73CWPCh. 18 - Prob. 74CWPCh. 18 - Prob. 75CWPCh. 18 - Prob. 76CWPCh. 18 - Prob. 77CWPCh. 18 - Prob. 78CWPCh. 18 - Prob. 79CPCh. 18 - Prob. 80CPCh. 18 - Prob. 81CPCh. 18 - Prob. 82CPCh. 18 - Prob. 83CPCh. 18 - Prob. 84CPCh. 18 - Prob. 85CPCh. 18 - Prob. 86CPCh. 18 - Prob. 87IPCh. 18 - Prob. 88IP
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Text book image
Introductory Chemistry For Today
Chemistry
ISBN:9781285644561
Author:Seager
Publisher:Cengage
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning