EBK CHEMISTRY: AN ATOMS FIRST APPROACH
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
2nd Edition
ISBN: 9780100552234
Author: ZUMDAHL
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 18, Problem 27E
Interpretation Introduction

Interpretation: List of isotopes of krypton is given. The most stable and the hottest among them is to be stated. Time of decay of 87.5% of each isotope is to be stated.

Concept introduction: Decay constant is the quantity that expresses the rate of decrease of number of atoms of a radioactive element per second. Half life of radioactive sample is defined as the time required for the number of nuclides to reach half of the original value.

The nuclides having longer half life are more stable while nuclides having shorter half life are less stable.

To determine: The most stable and the hottest isotope among the given isotopes of krypton; the time of decay for 73Kr ; the time of decay for 74Kr ; the time of decay for 76Kr and the time of decay for 81Kr .

Expert Solution & Answer
Check Mark

Answer to Problem 27E

Answer

The most stable isotope is 81Kr and the hottest one is 73Kr

The time of decay for 87.5%of73Kr is 81.428s_ .

The time of decay for 87.5%of74Kr is. 34.51s_

The time of decay for 87.5%of76Kr is 44.41h_

The time of decay for 87.5%of81Kr is 6.302×105years_

Explanation of Solution

Explanation

The most stable isotope is 81Kr and the hottest one is 73Kr

The nuclides having longer half life are more stable while nuclides having shorter half life are less stable. Thus the most stable isotope is 81Kr and the hottest isotope is 73Kr .

The time of decay for 73Kr is 81.428s_

Explanation

The decay constant can be calculated by the formula given below.

λ=0.693t1/2

Where

  • t1/2 is the half life of nuclide.
  • λ is the decay constant.

Substitute the value of λ in the above expression.

λ=0.69327s1=0.0256s1

The fraction of isotope decayed is 87.5100 .

The fraction remaining =187.5100=12.5100

The time of decay can be calculated by the formula,

t=2.303λlogn0n

Where

  • n0 is the number of atoms initially present.
  • n is the number of atoms after time “t”.

Substitute the values of λ , n0 and n in the above expression.

t=2.303λlogn0nt=2.303λlog10012.5t=2.3030.0256log10012.5t=81.428s_ .

The time of decay for 74Kr is 34.51s_ .

Explanation

The decay constant is calculated by the formula,

λ=0.693t1/2

Where

  • t1/2 is the half life of nuclide.
  • λ is the decay constant.

Substitute the value of t1/2 in the above expression.

λ=0.69311.5min1

The fraction of isotope decayed is 87.5100 .

The fraction remaining =187.5100=12.5100

The time of decay can be calculated by the formula,

t=2.303λlogn0n

Where

  • n0 is the number of atoms initially present.
  • n is the number of atoms after time “t”.

Substitute the values of λ , n0 and n in the above expression.

t=2.303λlogn0nt=2.303λlog10012.5t=2.303×11.50.693log8t=34.51min_

The time of decay for 76Kr is 44.41h_

Explanation

The decay constant can be calculated by the formula given below.

λ=0.693t1/2

Where

  • t1/2 is the half life of nuclide.
  • λ is the decay constant.

Substitute the value of t1/2 in the above expression.

λ=0.69314.8h1

The fraction of isotope decayed is 87.5100 .

The fraction remaining =187.5100=12.5100

The time of decay can be calculated by the formula,

t=2.303λlogn0n

Where

  • n0 is the number of atoms initially present.
  • n is the number of atoms after time “t”.

Substitute the values of λ , n0 and n in the above expression.

t=2.303λlogn0nt=2.303λlog10012.5t=2.303×14.80.693log8t=44.41h_

The time of decay for 81Kr is 6.302×105years_ .

Explanation

The decay constant can be calculated by the formula given below.

λ=0.693t1/2

Where

  • t1/2 is the half life of nuclide.
  • λ is the decay constant.

Substitute the value of t1/2 in the above expression.

λ=0.6932.1×105year

The fraction of isotope decayed is 87.5100 .

The fraction remaining =187.5100=12.5100

The time of decay can be calculated by the formula,

t=2.303λlogn0n

Where

  • n0 is the number of atoms initially present.
  • n is the number of atoms after time “t”.

Substitute the values of λ , n0 and n in the above expression.

t=2.303λlogn0nt=2.303×2.1×1050.693log10012.5t=2.303×2.1×1050.693log8t=6.302×105years_

Conclusion

Conclusion

The most stable isotope is 81Kr and the hottest one is 73Kr

The time of decay for 87.5%of73Kr is 81.428s_ .

The time of decay for 87.5%of74Kr is. 34.51s_

The time of decay for 87.5%of76Kr is 44.41h_

The time of decay for 87.5%of81Kr is 6.302×105years_

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3. 2. 1. On the graph below, plot the volume of rain in milliliters versus its height in centimeters for the 400 mL beaker. Draw a straight line through the points and label it "400 mL beaker." Volume (mL) 400 350 300 250 200 150 750 mL Florence Volume Versus Height of Water 400 mL beaker 100 50 0 0 2 3 4 5 Height (cm) 6 7 8 9 10 Explain why the data points for the beaker lie roughly on a straight line. What kind of relationship is this? How do you know? (see page 276 text) the design of the beaker is a uniform cylinder the volume of liquid increases evenly with its height resulting in a linear relationship. What volume would you predict for 10.0 cm of water? Explain how you arrived at your answer. Use the data table and the graph to assist you in answering the question. 4. Plot the volume of rain in milliliters versus its height in centimeters for the 250 mL Florence flask on the same graph. Draw a best-fit curve through the points and label it "250 mL Florence flask." oke came
Show work. Don't give Ai generated solution
In the video, we looked at the absorbance of a certain substance and how it varies depending on what wavelength of light we are looking at. Below is a similar scan of a different substance. What color BEST describes how this substance will appear? Absorbance (AU) Violet Blue Green Orange 1.2 1.0- 0.8- 0.6- 0.4- 0.2 0.0 450 500 550 600 650 700 Wavelength (nm) violet indigo blue green yellow orange red Red O Cannot tell from this information In the above graph, what causes -450 nm wavelength of light to have a higher absorbance than light with a -550 nm wavelength? Check all that are true. The distance the light travels is different The different data points are for different substances The concentration is different at different times in the experiment Epsilon (molar absortivity) is different at different wavelengths

Chapter 18 Solutions

EBK CHEMISTRY: AN ATOMS FIRST APPROACH

Ch. 18 - Prob. 1QCh. 18 - Prob. 2QCh. 18 - Prob. 3QCh. 18 - Prob. 4QCh. 18 - Prob. 5QCh. 18 - Prob. 6QCh. 18 - Prob. 7QCh. 18 - Prob. 8QCh. 18 - Prob. 9QCh. 18 - Prob. 10QCh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - Prob. 50ECh. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - A chemist studied the reaction mechanism for the...Ch. 18 - Prob. 55ECh. 18 - Prob. 56ECh. 18 - Prob. 57ECh. 18 - Prob. 58ECh. 18 - Prob. 59AECh. 18 - Prob. 60AECh. 18 - Prob. 61AECh. 18 - Prob. 62AECh. 18 - Prob. 63AECh. 18 - Prob. 64AECh. 18 - Prob. 65AECh. 18 - Prob. 66AECh. 18 - Prob. 67AECh. 18 - Prob. 68AECh. 18 - Prob. 69AECh. 18 - Prob. 70AECh. 18 - Prob. 71AECh. 18 - Prob. 72AECh. 18 - Prob. 73CWPCh. 18 - Prob. 74CWPCh. 18 - Prob. 75CWPCh. 18 - Prob. 76CWPCh. 18 - Prob. 77CWPCh. 18 - Prob. 78CWPCh. 18 - Prob. 79CPCh. 18 - Prob. 80CPCh. 18 - Prob. 81CPCh. 18 - Prob. 82CPCh. 18 - Prob. 83CPCh. 18 - Prob. 84CPCh. 18 - Prob. 85CPCh. 18 - Prob. 86CPCh. 18 - Prob. 87IPCh. 18 - Prob. 88IP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning