Interpretation:
The atoms being oxidized and reduced, and the oxidizing and reducing agents in the given reaction should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.
Interpretation:
The atoms being oxidized and reduced, and the oxidizing and reducing agents in the given reaction should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.
Interpretation:
The atoms being oxidized and reduced, and the oxidizing and reducing agents in the given reaction should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
EBK INTRODUCTORY CHEMISTRY
- Oxidation of 1.00 g of carbon monoxide, CO, produces 1.57 g of carbon dioxide, CO2. How many grams of oxygen were required in this reaction?arrow_forwardSodium thiosulfate, Na2S2O3, is used as a fixer in black-and-white photography. Suppose you have a bottle of sodium thiosulfate and want to determine its purity. The thiosulfate ion can be oxidized with I2 according to the balanced, net ionic equation I2(aq) + 2 S2O32(aq) 2 I(aq) + S4O62 (aq) If you use 40.21 mL of 0.246 M I2 in a titration, what is the weight percent of Na2S2O3 in a 3.232-g sample of impure material?arrow_forward4.112 A metallurgical firm wishes to dispose of 1300 gallons of waste sulfuric acid whose molarity is 1.37 M. Before disposal, it will be reacted with calcium hydroxide (slaked lime), which costs $0.23 per pound. (a) Write the balanced chemical equation for this process. (b) Determine the cost that the firm will incur from this use of slaked lime.arrow_forward
- One of the ways to remove nitrogen monoxide gas, a serious source of air pollution, from smokestack emissions is by reaction with ammonia gas, NH3. The products of the reaction, N2 and H2O, are not toxic. Write the balanced equation for this reaction. Assign an oxidation number to each element in the reactants and products, and indicate which element is oxidized and which is reduced.arrow_forwardChlorine gas was first prepared in 1774 by C. W. Scheele by oxidizing sodium chloride with manganese(IV) oxide. The reaction is NaCl(aq) + H2SO4(aq) + MnO2(s) Na2SO4(aq) + MnCl2(aq) + H2O(l) + Cl2 (g) Balance this equation.arrow_forwardYou wish to determine the weight percent of copper in a copper-containing alloy. After dissolving a 0.251 -g sample of the alloy in acid, an excess of KI is added, and the Cu2+ and I ions undergo the reaction 2 Cu2+(aq) + 5 I(aq) 2 CuI(s) + I3(aq) The liberated I3 is titrated with sodium thiosulfate according to the equation I3 (aq) + 2 S2O32(aq) S4O62(aq) + 3 I (aq) (a) Designate the oxidizing and reducing agents in the two reactions above. (b) If 26.32 mL of 0.101 M Na2S2O3 is required for titration to the equivalence point, what is the weight percent of Cu in the alloy?arrow_forward
- Triiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: IO3(aq) + I(aq) I3(aq) Triiodide ion concentration is determined by titration with a sodium thiosulfate (Na2S2O3) solution. The products are iodide ion and tetrathionate ion (S4O6). a. Balance the equation for the reaction of IO3 with I ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HQ required to convert all of the IO3 ions to I ions? c. Write and balance the equation for the reaction of S2O32 with I3 in acidic solution. d. A 25.00-mL sample of a 0.0100 M solution of KIO. is reacted with an excess of KI. It requires 32.04 mL of Na2S2O3 solution to titrate the I3 ions present. What is the molarity of the Na2S2O3 solution? e. How would you prepare 500.0 mL of the KIO3 solution in part d using solid KIO3?arrow_forwardThe balanced equation for the reduction of iron ore to the metal using CO is Fe2O3(s) + 3 CO(g) 2 Fe(s) + 3 CO2(g) (a) What is the maximum mass of iron, in grams, that can be obtained from 454 g (1.00 lb) of iron(III) oxide? (b) What mass of CO is required to react with 454 g cot Fe2O3?arrow_forwardGold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen. 4 Au(s) + 8 NaCN(aq) + O2(g) + 2 H2O() 4 NaAu(CN)2(aq) + 4 NaOH(aq) (a) Name the oxidizing and reducing agents in this reaction. What has been oxidized, and what has been reduced? (b) If you have exactly one metric ton (1 metric ton = 1000 kg) of gold-bearing rock, what volume of 0.075 M NaCN, in liters, do you need to extract the gold if the rock is 0.019% gold?arrow_forward
- Balance the following equations: (a) for the reaction to produce "superphosphate" fertilizer Ca3(PO4)2(s) + H2SO4(aq) Ca(H2PO4)2(aq) + CaSO4(s) (b) for the reaction to produce diborane, B2H6 NaBH4(s) + H2SO4(aq) B2H6(g) + H2(g) + Na2SO4(aq) (c) for the reaction to produce tungsten metal from tungsten(VI) oxide WO3(s) + H2(g) W(s) + H2O() (d) for the decomposition of ammonium dichromate (NH4)2Cr2O7(s) N2(g) + H2O() + Cr2O3(s)arrow_forward(a) Butane gas, C4H10, can burn completely in air [use O2(g) as the other reactant] to give carbon dioxide gas and water vapor. Write a balanced equation for this combustion reaction. (b) Write a balanced chemical equation for the complete combustion of C3H7BO3, a gasoline additive. The products of combustion are CO2(g), H2O(g), and B2O3(s).arrow_forwardEthanol, C2H5OH, is a gasoline additive that can be produced by fermentation of glucose. C6H12O62C2H5OH+2CO2 (a) Calculate the mass (g) of ethanol produced by the fermentation of 1.000 lb glucose. (b) Gasohol is a mixture of 10.00 mL ethanol per 90.00 mL gasoline. Calculate the mass (in g) of glucose required to produce the ethanol in 1.00 gal gasohol. Density of ethanol = 0.785 g/mL. (c) By 2022, the U. S. Energy Independence and Security Act calls for annual production of 3.6 1010 gal of ethanol, no more than 40% of it produced by fermentation of corn. Fermentation of 1 ton (2.2 103 lb) of corn yields approximately 106 gal of ethanol. The average corn yield in the United States is about 2.1 105 lb per 1.0 105 m2. Calculate the acreage (in m2) required to raise corn solely for ethanol production in 2022 in the United States.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning