(a)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.
Answer to Problem 32QAP
C being oxidized and Cl being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of K is assigned as + 1 and O is assigned as -2 and the oxidation state of Cl is assigned as x:
Since,
so:
1 - x + 3(-2) = 0
x = + 5
For
The oxidation state of O is assigned as -2, of H as + 1 and the oxidation state of C is assigned as x:
Since,
so:
6x + 12(1) + 6(-2) = 0
x = 0
For
The oxidation state of K is assigned as + 1 and the oxidation state of Cl is assigned as x:
Since,
so:
1 + (-x) = 0
x = + 1
For
The oxidation state of O is assigned as -2 and the oxidation state of C is assigned as x:
Since,
so:
x + 2(-2) = 0
x = + 4
Oxidation states:+50+1+4
Since, the oxidation state of C increases from 0 to + 4 so, it undergoes oxidation and the oxidation state of Cl decreases from + 5 to + 1 so it undergoes reduction.
(b)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.
Answer to Problem 32QAP
C being oxidized and O being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of H is assigned as + 1 and the oxidation state of C is assigned as x:
Since,
so:
8 x + 18(-1) = 0
x = -2.25
For
The oxidation state of H is assigned as + 1 and the oxidation state of O is assigned as x:
Since,
so:
1(2) + x = 0
x = -2
For
The oxidation state of O is assigned as -2 and the oxidation state of C is assigned as x:
Since,
so:
x + 2(-2) = 0
x = + 4
Oxidation states:-2.250+4-2
Since, the oxidation state of C increases from -2.25 to + 4 so, it undergoes oxidation and the oxidation state of O decreases from 0 to -2 so it undergoes reduction.
(c)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.
Answer to Problem 32QAP
P being oxidized and Cl being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of Cl is assigned as -1 and the oxidation state of P is assigned as x:
Since,
so:
x + 3(-1) = 0
x = + 3
For
The oxidation state of Cl is assigned as -1 and the oxidation state of P is assigned as x:
Since,
so:
x + 5(-1) = 0
x = + 5
Oxidation states: + 30 + 5(for P) -1(for O)
Since, the oxidation state of P increases from + 3 to + 5 so, it undergoes oxidation and the oxidation state of Cl decreases from 0 to -1 so it undergoes reduction.
(d)
Interpretation:
The atoms being oxidized and reduced should be determined.
Concept Introduction:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
The element being oxidized is the one whose oxidation increases in the reaction whereas the reduced element is the one whose oxidation number decreases in the reaction.
The atom which gains electrons in the reaction that is which gets reduced in the reaction is said to be the oxidizing agent also known as the electron acceptor whereas the atom which loses electrons in the reaction that is which gets oxidized in the reaction is said to be the reducing agent also known as the electron donor.
Answer to Problem 32QAP
Ca being oxidized and H being reduced.
Explanation of Solution
Given:
The oxidation state is defined as the charge(s) that an atom would have when electron(s) were transferred completely from a molecule or ion.
While determining the oxidation state of compound, the element with greater electronegativity is assigned with negative value of oxidation state which is equal to the charge as an anion in ionic compounds and element whose oxidation states are fixed are assigned. For compounds with no charge, the sum of oxidation states is zero.
The oxidation states are determined as:
The oxidation state for
For
The oxidation state of Ca is assigned as + 2 and the oxidation state of H is assigned as x:
Since,
so:
+2 + 2(x) = 0
x = -1
Oxidation states: 0 0 + 2(for Ca) -1(for H)
Since, the oxidation state of Ca increases from 0 to + 2 so, it undergoes oxidation and the oxidation state of H decreases from 0 to -1 so it undergoes reduction.
Want to see more full solutions like this?
Chapter 18 Solutions
EBK INTRODUCTORY CHEMISTRY
- Bunsenite (NiO) crystallizes like common salt (NaCl), with a lattice parameter a = 4.177 Å. A sample of this mineral that has Schottky defects that are not supposed to decrease the volume of the material has a density of 6.67 g/cm3. What percentage of NiO molecules is missing? (Data: atomic weight of Ni: 58.7; atomic weight of O: 16).arrow_forwardA sample of aluminum (face-centered cubic - FCC) has a density of 2.695 mg/m3 and a lattice parameter of 4.04958 Å. Calculate the fraction of vacancies in the structure. (Atomic weight of aluminum: 26.981).arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardWhich of the following species is a valid resonance structure of A? Use curved arrows to show how A is converted to any valid resonance structure. When a compound is not a valid resonance structurc of A, explain why not. Provide steps and tips on what to look for to understand how to solve and apply to other problems.arrow_forward
- N IZ Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 HN Molecule 3 Х HN www. Molecule 4 Molecule 5 Molecule 6 none of the above NH NH Garrow_forwardShow work with explanation. don't give Ai generated solutionarrow_forwardFollow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning