
- a. What circuit supplies the workshop lighting? ________________
- b. What circuit supplies the plug-in strip over the workbench? ________________
- c. What circuit supplies the freezer receptacle? ________________
(a)

Mention the type of circuit that is used to supply the workshop lighting.
Answer to Problem 1R
The circuit used to supply the workshop lighting is A17.
Explanation of Solution
Discussion:
Refer to Figure 18-1 in the textbook that shows the conduit layout for workshop. In this layout, the lighting circuit is supplied by the branch circuit A17. In addition to supply the lighting, the circuit A17 also feeds the ceiling exhaust fan and chime transformer.
Conclusion:
Thus, the circuit used to supply the workshop lighting is A17.
(b)

Mention the type of circuit that is used to supply the plug-in strip over the workbench.
Answer to Problem 1R
The circuit used to supply the plug-in strip receptacles over the workbench is A18.
Explanation of Solution
Discussion:
Refer to Figure 18-1 in the textbook that shows the conduit layout for workshop. The plug-in strip receptacles and the receptacles connected to the right of the main panelboard are supplied with circuit A18. The receptacles mounted in an unfinished basement are protected with GFCI protection and accomplished by installing GFCI receptacles or GFCI circuit breakers in panelboard A.
Conclusion:
Thus, the circuit used to supply the plug-in strip receptacles over the workbench is A18.
(c)

Mention the type of circuit that is used to supply the freezer receptacle.
Answer to Problem 1R
The circuit used to supply the freezer receptacle is A13.
Explanation of Solution
Discussion:
Refer to Figure 18-1 in the textbook that shows the conduit layout for workshop. In this layout, the freezer single receptacle is supplied with circuit A13. Refer to Figure 18-9 in the textbook that shows the outlet boxes (a handy box) used for the freezer receptacles.
Conclusion:
Thus, the circuit used to supply the freezer receptacle is A13.
Want to see more full solutions like this?
Chapter 18 Solutions
Electrical Wiring: Residental - With Plans (Paperback) Package
Additional Engineering Textbook Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
SURVEY OF OPERATING SYSTEMS
Mechanics of Materials (10th Edition)
Problem Solving with C++ (10th Edition)
Vector Mechanics For Engineers
Elementary Surveying: An Introduction To Geomatics (15th Edition)
- Can you help me find the result of an integral 0/2 a² X + a dxarrow_forwardQ1/Sketch the root locus for the system shown in Figure 1 and find the following: a. The exact point and gain where the locus crosses the jo-axis b. The breakaway point on the real axis c. The range of K within which the system is stable d. Angles of departure and arrival R(s) + K(s²-4s +20) C(s) (s+2)(s + 4)arrow_forwardExam2 Subject: (Numerical Analysis) Class: Third Date: 27/4/2025 Time: 60 minutes Q1. For what values of k does this system of equations has no solution? (use Gauss-Jordan eliminations) kx + y + z = 1 x+ky + z = 1 x+y+kz=1arrow_forward
- Consider the Difference equation of a causal Linear time-invariant (LTI) system given by: (y(n) - 1.5y(n - 1) + 0.5y(n = 2) = x(n) a) Implement the difference equation model of this system. b) Find the system transfer function H(z). c) For an input x(n) = 8(n), determine the output response y(n). d) Verify the initial value theorem y(0) with part (c).arrow_forwardQ5B. Find the type of the controller in the following figures and use real values to find the transfer function of three of them[ Hint Pi,Pd and Lead,lag are found so put the controller with its corresponding compensator]. R₁ R₂ Rz HE C2 RA HE R₁ R2 RA とarrow_forwardQ1// Sketch the root locus for the unity feedback system. Where G(s)=)= K S3+252 +25 and find the following a. Sketch the asymptotes b. The exact point and gain where the locus crosses the jo-axis c. The breakaway point on the real axis d. The range of K within which the system is stable e. Angles of departure and arrival.arrow_forward
- Determine X(w) for the given function shown in Figure (1) by applying the differentiation property of the Fourier Transform. Figure (1) -1 x(t)arrow_forwardCan you solve a question with a drawing Determine X(w) for the given function shown in Figure (1) by applying the differentiation property of the Fourier Transform. Figure (1) -1 x(t)arrow_forwardAn inductor has a current flow of 3 A when connected to a 240 V, 60 Hz power line. The inductor has a wire resistance of 15 Find the Q of the inductorarrow_forward
- صورة من s94850121arrow_forwardThe joint density function of two continuous random variables X and Yis: p(x, y) = {Keós (x + y) Find (i) the constant K 0 2 0arrow_forwardShow all the steps please, Solve for the current through R2 if E2 is replaced by a current source of 10mA using superposition theorem. R5=470Ω R2=1000Ω R6=820Ωarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT
