Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 1P

Estimate the common logarithm of 10 using linear interpolation.

(a) Interpolate between log 8 = 0.9030900  and log  12 = 1.0791812 .

(b) Interpolate between log 9 = 0.9542425  and log  11 = 1.0413927 .

For each of the interpolations, compute the percent relative error based on the true value.

(a)

Expert Solution
Check Mark
To determine

To calculate: The common logarithmic of 10 by the linear interpolation between log8=0.9030900 and log12=1.0791812. Also, find the percentage relative error based on the true value.

Answer to Problem 1P

Solution:

The common logarithmic of 10 by the linear interpolation between log8 and log12 is 0.9911356 with relative percentage error of 0.88644%.

Explanation of Solution

Given Information:

The values,

log8=0.9030900log12=1.0791812

Formula used:

Linear interpolation formula:

f1(x)=f(x0)+f(x1)f(x0)x1x0(xx0)

And, formula for percentage relative error is,

εt=|True valueApproximatevalueTrue value|×100%

Calculation:

Consider the values, log8=0.9030900 and log12=1.0791812.

Here, x0=8 and x1=12. Therefore,

f(x0)=0.9030900f(x1)=1.0791812

Thus, the value of log 10 by the linear interpolation is,

f1(10)=0.9030900+1.07918120.9030900128(108)=0.9030900+0.17609124×2=0.9030900+0.0880456=0.9911356

Now, the true value of log10=1. Therefore, relative percentage error is,

εt=10.99113561×100%=0.0088644×100%=0.88644%

Hence, the value of log 10 by the linear interpolation is 0.9911356 with relative percentage error of 0.88644%.

(b)

Expert Solution
Check Mark
To determine

To calculate: The common logarithmic of 10 by the linear interpolation between log9=0.9542425 and log11=1.0413927. Also, find the percentage relative error based on the true value.

Answer to Problem 1P

Solution:

The common logarithmic of 10 by the linear interpolation between log9 and log11 is 0.9978176 with relative percentage error of 0.218%.

Explanation of Solution

Given Information:

The values,

log9=0.9542425log11=1.0413927

Formula used:

Linear interpolation formula:

f1(x)=f(x0)+f(x1)f(x0)x1x0(xx0)

And, formula for percentage relative error is,

εt=|True valueApproximatevalueTrue value|×100%

Calculation:

Consider the values, log9=0.9542425 and log11=1.0413927.

Here, x0=9 and x1=11. Therefore,

f(x0)=0.9542425f(x1)=1.0413927

Thus, the value of log 10 by the linear interpolation is,

f1(10)=0.9542425+1.04139270.9542425119(109)=0.9542425+0.08715022×1=0.9542425+0.0435751=0.9978176

Now, the true value of log10=1. Therefore, relative percentage error is,

εt=|10.99781761|×100%=0.0021824×100%=0.218%

Hence, the value of log 10 by the linear interpolation is 0.9978176 with relative percentage error of 0.218%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
To generate leads for new business, Gustin Investment Services offers free financial planning seminars at major hotels in Southwest Florida. Gustin conducts seminars for groups of 25 individuals. Each seminar costs Gustin $3,700, and the average first-year commission for each new account opened is $5,200. Gustin estimates that for each individual attending the seminar, there is a 0.01 probability that individual will open a new account. (a) Determine the equation for computing Gustin's profit per seminar, given values of the relevant parameters. Profit = (3,700 x 5,200) - New Accounts Opened Profit = 5,200 - (New Accounts Opened x 3,700) Profit = (New Accounts Opened x 3,700) - 5,200 Profit = New Accounts Opened - (5,200 × 3,700) Profit = (New Accounts Opened x 5,200) - 3,700 (b) What type of random variable is the number of new accounts opened? Hint: Review Appendix 12.1 for descriptions of various types of probability distributions. continuous integer uniform normal discrete uniform…
Strassel Investors buys real estate, develops it, and resells it for a profit. A new property is available, and Bud Strassel, the president and owner of Strassel Investors, believes if he purchases and develops this property, it can then be sold for $158,000. The current property owner has asked for bids and stated that the property will be sold for the highest bid in excess of $100,000. Two competitors will be submitting bids for the property. Strassel does not know what the competitors will bid, but he assumes for planning purposes that the amount bid by each competitor will be uniformly distributed between $100,000 and $148,000. (a) What is the estimate of the probability Strassel will be able to obtain the property using a bid of $128,000? (Use at least 5,000 trials. Round your answer three decimal places.) (b) How much does Strassel need to bid to be assured of obtaining the property? $128,000 $138,000 $148,000 (c) Use the simulation model to compute the profit for each trial of…
Grear Tire Company has produced a new tire with an estimated mean lifetime mileage of 34,500 miles. Management also believes that the standard deviation is 4,500 miles and that tire mileage is normally distributed. To promote the new tire, Grear has offered to refund a portion of the purchase price if the tire fails to reach 30,000 miles before the tire needs to be replaced. Specifically, for tires with a lifetime below 30,000 miles, Grear will refund a customer $1 per 100 miles short of 30,000. Construct a simulation model to answer the following questions. (Use at least 1,000 trials.) (a) For each tire sold, what is the average cost of the promotion (in $)? (Round your answer to two decimal places.) (b) What is the probability that Grear will refund more than $25 for a tire? (Round your answer to three decimal places.)

Chapter 18 Solutions

Numerical Methods for Engineers

Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Text book image
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License