
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 13P
Develop quadratic splines for the first five data points in Prob. 18.5 and predict
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Use the Euclidean algorithm to find two sets of integers (a, b, c) such
that
55a65b+143c:
Solution
= 1.
By the Euclidean algorithm, we have:
143 = 2.65 + 13 and 65 = 5.13, so 13 = 143 – 2.65.
-
Also, 55 = 4.13+3, 13 = 4.3 + 1 and 3 = 3.1,
so 1 = 13 — 4.3 = 13 — 4(55 – 4.13) = 17.13 – 4.55.
Combining these, we have:
1 = 17(143 – 2.65) - 4.55 = −4.55 - 34.65 + 17.143,
so we can take a = − −4, b = −34, c = 17. By carrying out the division
algorithm in other ways, we obtain different solutions, such as
19.55 23.65 +7.143, so a = = 9, b -23, c = 7.
=
=
how
?
come
[Note that 13.55 + 11.65 - 10.143 0, so we can obtain new solutions by
adding multiples of this equation, or similar equations.]
-
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p − 1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
p-1
2
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
23
32
how come?
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
The set T is the subset of these residues exceeding
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
Let n = 7, let p = 23 and let S be the set of least positive residues mod p of the first (p-1)/2
multiple of n, i.e.
n mod p, 2n mod p, ...,
2
p-1
-n mod p.
Let T be the subset of S consisting of those residues which exceed p/2.
Find the set T, and hence compute the Legendre symbol (7|23).
The first 11 multiples of 7 reduced mod 23 are
7, 14, 21, 5, 12, 19, 3, 10, 17, 1, 8.
23
The set T is the subset of these residues exceeding
2°
So T = {12, 14, 17, 19, 21}.
By Gauss' lemma (Apostol Theorem 9.6),
(7|23) = (−1)|T| = (−1)5 = −1.
how come?
Chapter 18 Solutions
Numerical Methods for Engineers
Ch. 18 - 18.1 Estimate the common logarithm of 10 using...Ch. 18 - 18.2 Fit a second-order Newton’s interpolating...Ch. 18 - 18.3 Fit a third-order Newton’s interpolating...Ch. 18 - Repeat Probs. 18.1 through 18.3 using the Lagrange...Ch. 18 - 18.5 Given these...Ch. 18 - 18.6 Given these data
x 1 2 3 5 7 8
...Ch. 18 - Repeat Prob. 18.6 using Lagrange polynomials of...Ch. 18 - 18.8 The following data come from a table that was...Ch. 18 - 18.9 Use Newton’s interpolating polynomial to...Ch. 18 - Use Newtons interpolating polynomial to determine...
Ch. 18 - 18.11 Employ inverse interpolation using a cubic...Ch. 18 - 18.12 Employ inverse interpolation to determine...Ch. 18 - 18.13 Develop quadratic splines for the first five...Ch. 18 - 18.14 Develop cubic splines for the data in Prob....Ch. 18 - Determine the coefficients of the parabola that...Ch. 18 - Determine the coefficients of the cubic equation...Ch. 18 - 18.17 Develop, debug, and test a program in either...Ch. 18 - 18.18 Test the program you developed in Prob....Ch. 18 - 18.19 Use the program you developed in Prob. 18.17...Ch. 18 - Use the program you developed in Prob. 18.17 to...Ch. 18 - Develop, debug, and test a program in either a...Ch. 18 - 18.22 A useful application of Lagrange...Ch. 18 - Develop, debug, and test a program in either a...Ch. 18 - Use the software developed in Prob. 18.23 to fit...Ch. 18 - Use the portion of the given steam table for...Ch. 18 - The following is the built-in humps function that...Ch. 18 - 18.28 The following data define the sea-level...Ch. 18 - 18.29 Generate eight equally-spaced points from...Ch. 18 - 18.30 Temperatures are measured at various points...
Additional Math Textbook Solutions
Find more solutions based on key concepts
First Derivative Test a. Locale the critical points of f. b. Use the First Derivative Test to locale the local ...
Calculus: Early Transcendentals (2nd Edition)
23. A plant nursery sells two sizes of oak trees to landscapers. Large trees cost the nursery $120 from the gro...
College Algebra (Collegiate Math)
In Exercises 9-20, use the data in the following table, which lists drive-thru order accuracy at popular fast f...
Elementary Statistics (13th Edition)
Provide an example of a qualitative variable and an example of a quantitative variable.
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Check Your Understanding
Reading Check Complete each sentence using > or < for □.
RC1. 3 dm □ 3 dam
Basic College Mathematics
Use the ideas in drawings a and b to find the solution to Gausss Problem for the sum 1+2+3+...+n. Explain your ...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
- Shading a Venn diagram with 3 sets: Unions, intersections, and... The Venn diagram shows sets A, B, C, and the universal set U. Shade (CUA)' n B on the Venn diagram. U Explanation Check A- B Q Search 田arrow_forwardWhat is the area of this figure? 5 mm 4 mm 3 mm square millimeters 11 mm Submit 8 mm Work it out 9 mmarrow_forwardPlease explain how come of X2(n).arrow_forward
- No chatgpt pls will upvotearrow_forwardFind all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forward
- Determine whether each function is an injection and determine whether each is a surjection.arrow_forwardLet A = {a, b, c, d}, B = {a,b,c}, and C = {s, t, u,v}. Draw an arrow diagram of a function for each of the following descriptions. If no such function exists, briefly explain why. (a) A function f : AC whose range is the set C. (b) A function g: BC whose range is the set C. (c) A function g: BC that is injective. (d) A function j : A → C that is not bijective.arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective. why?(b) Determine if f is surjective. why?(c) Based upon (a) and (b), is f bijective? why?arrow_forward
- Let f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective.(b) Determine if f is surjective. (c) Based upon (a) and (b), is f bijective?arrow_forward1 S 0 sin(lnx) x² - 1 Inx dxarrow_forward2 6. Modelling. Suppose that we have two tanks (A and B) between which a mixture of brine flows. Tank A contains 200 liters of water in which 50 kilograms of salt has been dissolved and Tank B contains 100 liters of pure water. Water containing 1kg of salt per liter is pumped into Tank A at the rate of 5 liters per minute. Brine mixture is pumped into Tank A from Tank B at the rate of 3 liters per minute and brine mixture is pumped from Tank A into Tank B at the rate of 8 liters per minute. Brine is drained from Tank B at a rate of 5 liters per minute. (a) Draw and carefully label a picture of the situation, including both tanks and the flow of brine between them. JankA 1ks of Salt Slits Pump EL Brine mit tark A from tank 13 Tank 13 k 3L zooliters of Ico liters of water with pure water. Saky salt → 777 disslore inside Brine mix is pumped from tank A to B of 82 Brine drainen min by Gf salt (b) Assume all brine mixtures are well-stirred. If we let t be the time in minutes, let x(t) 1ks…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Finding Local Maxima and Minima by Differentiation; Author: Professor Dave Explains;https://www.youtube.com/watch?v=pvLj1s7SOtk;License: Standard YouTube License, CC-BY