Concept explainers
Estimate the common logarithm of 10 using linear interpolation.
(a) Interpolate between
(b) Interpolate between
For each of the interpolations, compute the percent relative error based on the true value.
(a)
To calculate: The common logarithmic of
Answer to Problem 1P
Solution:
The common logarithmic of
Explanation of Solution
Given Information:
The values,
Formula used:
Linear interpolation formula:
And, formula for percentage relative error is,
Calculation:
Consider the values,
Here,
Thus, the value of log 10 by the linear interpolation is,
Now, the true value of
Hence, the value of log 10 by the linear interpolation is
(b)
To calculate: The common logarithmic of
Answer to Problem 1P
Solution:
The common logarithmic of
Explanation of Solution
Given Information:
The values,
Formula used:
Linear interpolation formula:
And, formula for percentage relative error is,
Calculation:
Consider the values,
Here,
Thus, the value of log 10 by the linear interpolation is,
Now, the true value of
Hence, the value of log 10 by the linear interpolation is
Want to see more full solutions like this?
Chapter 18 Solutions
Numerical Methods for Engineers
- Enter the data from Table 2 into a graphing calculator and graph the ranking scatter plot. Determine whetherthe data from the table would likely represent a function that is linear, exponential, or logarithmic.arrow_forwardDoes a linear, exponential, or logarithmic model best fit the data in Table 2? Find the model.arrow_forwardUse log21=0,log22=1, and log24=2 to estimate log23.arrow_forward
- What is the y -intercept on the graph of the logistic model given in the previous exercise?arrow_forwardTable 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. a. Let x represent time in years starting with x=0 for the year 1997. Let y represent the number of seals in thousands. Use logistic regression to fit a model to these data. b. Use the model to predict the seal population for the year 2020. c. To the nearest whole number, what is the limiting value of this model?arrow_forwardIn 1906, San Francisco experienced an intense earthquake with a magnitude of 7.8 on the Richter scale. In 1989, the Loma Prieta earthquake also affected the San Francisco area, and measured 6.9 on the Richter scale. Compare the intensities of the two earthquakes.arrow_forward
- A driver of a car stopped at a gas station to fill up his gas tank. He looked at his watch, and the time read exactly 3:40 p.m. At this time, he started pumping gas into the tank. At exactly 3:44, the tank was full and he noticed that he had pumped 10.7 gallons. What is the average rate of flow of the gasoline into the gas tank?arrow_forwardIn 2014, Chile experienced an intense earthquake with a magnitude of 8.2 on the Richter scale. In 2014, Los Angeles also experienced an earthquake which measured 5.1 on the Richter scale. Compare the intensities of the two earthquakes.arrow_forwardA light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean 199.0 hours. Whenever a bulb burns out, it is replaced. Let T be the time of the first bulb replacement. Let Xi, i = 1, . . . , 5, be the lifetimes of the five bulbs. Assume the lifetimes of the bulbs are independent. 1. Find P( X1 > 100). (Round the final answer to four decimal places.) 2. Find P( X1 > 100 and X2 > 100 and • • • and X5 > 100). (Round the final answer to four decimal places.) 3. Find P(T ≤ 100). (Round the final answer to four decimal places.) 4. Let t be any positive number. Find P(T ≤ t), which is the cumulative distribution function of T. 5. Find the mean of T. (Round the final answer to two decimal places.)arrow_forward
- compute log(0.01)arrow_forwardA light fixture contains five lightbulbs. The lifetime of each bulb is exponentially distributed with mean 199.0 hours. Whenever a bulb burns out, it is replaced. Let T be the time of the first bulb replacement. Let X1, i = 1, . . . , 5, be the lifetimes of the five bulbs. Assume the lifetimes of the bulbs are independent. 1. Find P( X1 > 100). (Round the final answer to four decimal places.) 2. Find P( X1 > 100 and X2 > 100 and • • • and X5 > 100). (Round the final answer to four decimal places.) 3. Find P(T ≤ 100). (Round the final answer to four decimal places.) 4. Let t be any positive number. Find P(T ≤ t), which is the cumulative distribution function of T. 5. Find the mean of T. (Round the final answer to two decimal places.)arrow_forwardfind Za/2 For a=0.13arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill