
Use Newton's interpolating polynomial to determine y at
x | 0 | 1 | 2 | 5.5 | 11 | 13 | 16 | 18 |
y | 0.5 | 3.134 | 5.3 | 9.9 | 10.2 | 9.35 | 7.2 | 6.2 |

To calculate: The value of
x | 0 | 1 | 2 | 5.5 | 11 | 13 | 16 | 18 |
y | 0.5 | 3.134 | 5.3 | 9.9 | 10.2 | 9.35 | 7.2 | 6.2 |
Answer to Problem 10P
Solution:
Thevalue of
Explanation of Solution
Given Information:
The provided data are,
x | 0 | 1 | 2 | 5.5 | 11 | 13 | 16 | 18 |
y | 0.5 | 3.134 | 5.3 | 9.9 | 10.2 | 9.35 | 7.2 | 6.2 |
Formula used:
The zero-order Newton’s interpolation formula:
The first-order Newton’s interpolation formula:
The second- order Newton’s interpolating polynomial is given by,
The n th-order Newton’s interpolating polynomial is given by,
Where,
The first finite divided difference is,
And, the n th finite divided difference is,
Calculation:
First, order the provided value as close to 8 as below,
Therefore,
And,
The first divided difference is,
And,
And,
Similarly,
The second divided difference is,
And,
And,
Similarly,
The third divided difference is,
And,
Similarly,
The fourth divided difference is,
And,
And,
And,
The fifth divided difference is,
And,
And,
The sixth divided difference is,
And,
The seventh divided difference is,
Therefore, the difference table can be summarized as,
First | Second | Third | Fourth | Fifth | Sixth | 7th | |||
0 1 2 3 4 5 6 7 | 5.5 11 13 2 1 16 0 18 | 9.9 10.2 9.35 5.3 3.134 7.2 0.5 6.2 | 0.054545-0.425 0.3682 2.166 0.2711 0.4188 0.3167 | 0.0069 0.0062 0.0048 0.0062 0.0055 | 0.0002
|
0.00 |
Since, the divided difference of fifth order is nearly equals to zero. So, the fourth-order polynomial is the optimal.
Therefore, the zero-order Newton’s interpolation polynomial is,
Thus, the value of y at
The first-order Newton’s interpolation polynomial is:
Thus, the value of y at
The second- order Newton’s interpolating polynomial is,
Thus, the value of y at
The third-order Newton’s interpolating polynomial is,
Thus, the value of y at
The fourth-order Newton’s interpolating polynomial is,
Thus, the value of y at
Hence, the value of
Want to see more full solutions like this?
Chapter 18 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
Elementary Statistics Using The Ti-83/84 Plus Calculator, Books A La Carte Edition (5th Edition)
Intermediate Algebra (13th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Calculus: Early Transcendentals (2nd Edition)
Precalculus: Mathematics for Calculus (Standalone Book)
Elementary Statistics: A Step By Step Approach
- Golden Ratio search Method f(x) = 2x^3 - 3x^2 - 12x + 1 Golden ratio search rules 1.If f(x) < f(x2): 1. Eliminate all x values less than x2 2. X2 becomes the new a 3. x, becomes the new x2 4. no change in b If f(x) > f(x2): 1. Eliminate all x values greater than x 2. x, becomes the new b 3. x2 becomes the new x 4. no change in aquesion=Narrow the interval in which the minimizer of the function f is located using the golden search method, starting with the initial interval (0,6], until its width is less than 2. Then, accept the midpoint of this interval as an approximate value of the minimizer of the function fand determine it. (ф=0.62)According to the question above, fill in the table below using the algorithm until the appropriate place.please write every step by step in a verry comprehensive wayarrow_forwardIn preparing for the upcoming holiday season, Fresh Toy Company (FTC) designed a new doll called The Dougie that teaches children how to dance. The fixed cost to produce the doll is $100,000. The variable cost, which includes material, labor, and shipping costs, is $31 per doll. During the holiday selling season, FTC will sell the dolls for $39 each. If FTC overproduces the dolls, the excess dolls will be sold in January through a distributor who has agreed to pay FTC $10 per doll. Demand for new toys during the holiday selling season is extremely uncertain. Forecasts are for expected sales of 60,000 dolls with a standard deviation of 15,000. The normal probability distribution is assumed to be a good description of the demand. FTC has tentatively decided to produce 60,000 units (the same as average demand), but it wants to conduct an analysis regarding this production quantity before finalizing the decision. (a) Determine the equation for computing FTC's profit for given values of the…arrow_forwardFor all integers a and b, (a + b)^4 ≡ a^4 + b^4 (mod 4).arrow_forward
- Let Χ be a real-valued character (mod k). Let k S = Σnx(n). n=1 If (a, k) = 1, ax(a)S = S (mod k). (iii) Write k = 2ºq where q is odd. Show that there is an integer a with (a, k) = 1 such that a = 3 (mod 2ª) and a = 2 (mod q). Deduce that 12S = 0 (mod k).arrow_forwardProve that (1) Σσς (α) μ(η/α) = n d/n (ii) Σσς(d) = η Σσο(α)/d d❘n d❘n (iii) σ (d) σ (n/d) = Σ d³oo(d) σo(n/d). d|n dnarrow_forwardhow to do part b,carrow_forward
- If p = 5 (mod 8), where p is prime, show that p|2 (P-1)/2 + 1. State and prove the corresponding result when p = 7 (mod 8). Deduce that 250 + 1 and 251 1 are composite. -arrow_forwardWhy the character no change for my remark?arrow_forwardIn preparing for the upcoming holiday season, Fresh Toy Company (FTC) designed a new doll called The Dougie that teaches children how to dance. The fixed cost to produce the doll is $100,000. The variable cost, which includes material, labor, and shipping costs, is $31 per doll. During the holiday selling season, FTC will sell the dolls for $39 each. If FTC overproduces the dolls, the excess dolls will be sold in January through a distributor who has agreed to pay FTC $10 per doll. Demand for new toys during the holiday selling season is extremely uncertain. Forecasts are for expected sales of 60,000 dolls with a standard deviation of 15,000. The normal probability distribution is assumed to be a good description of the demand. FTC has tentatively decided to produce 60,000 units (the same as average demand), but it wants to conduct an analysis regarding this production quantity before finalizing the decision. (a) Determine the equation for computing FTC's profit for given values of the…arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning




