Numerical Methods for Engineers
Numerical Methods for Engineers
7th Edition
ISBN: 9780073397924
Author: Steven C. Chapra Dr., Raymond P. Canale
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 18, Problem 10P

Use Newton's interpolating polynomial to determine y at x = 8 to the best possible accuracy. Compute the finite divided differences as in Fig. 18.5 and order your points to attain optimal accuracy and convergence.

x 0 1 2 5.5 11 13 16 18
y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2
Expert Solution & Answer
Check Mark
To determine

To calculate: The value of y at x=8 by the use of Newton’s interpolating polynomial where the provided data are,

x 0 1 2 5.5 11 13 16 18
y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2

Answer to Problem 10P

Solution:

Thevalue of y at x=8 by zero order Newton’s interpolating polynomial is 9.9, by first order Newton’s interpolating polynomial is 10.036, by second order Newton’s interpolating polynomial is 10.516, by third order Newton’s interpolating polynomial is 10.775 and by fourth order Newton’s interpolating polynomial is 10.812.

Explanation of Solution

Given Information:

The provided data are,

x 0 1 2 5.5 11 13 16 18
y 0.5 3.134 5.3 9.9 10.2 9.35 7.2 6.2

Formula used:

The zero-order Newton’s interpolation formula:

f0(x)=b0

The first-order Newton’s interpolation formula:

f1(x)=b0+b1(xx0)

The second- order Newton’s interpolating polynomial is given by,

f2(x)=b0+b1(xx0)+b2(xx0)(xx1)

The n th-order Newton’s interpolating polynomial is given by,

fn(x)=b0+b1(xx0)+b2(xx0)(xx1)++bn(xx0)(xx1)(xxn1)

Where,

b0=f(x0)b1=f[x1,x0]b2=f[x2,x1,x0]b2=f[xn,,x2,x1,x0]

The first finite divided difference is,

f[xi,xj]=f(xi)f(xj)xixj

And, the n th finite divided difference is,

f[xn,xn1,...,x1,x0]=f[xn,xn1,...,x1]f[xn1,...,x1,x0]xnx0

Calculation:

First, order the provided value as close to 8 as below,

x0=5.5,x1=11,x2=13,x3=2,x4=1,x5=16,x6=0 and x6=18.

Therefore,

f(x0)=9.9f(x1)=10.2f(x2)=9.35f(x3)=5.3

And,

f(x4)=3.134f(x5)=7.2f(x6)=0.5f(x7)=6.2

The first divided difference is,

f[x1,x0]=f(x1)f(x0)x1x0=10.29.9115.5=0.35.5=0.054545

And,

f[x2,x1]=f(x2)f(x1)x2x1=9.3510.21311=0.852=0.425

And,

f[x3,x2]=f(x3)f(x2)x3x2=5.39.35213=4.0511=0.368182

Similarly,

f[x4,x3]=2.166f[x5,x4]=0.271067f[x6,x5]=0.41875f[x7,x6]=0.31667

The second divided difference is,

f[x2,x1,x0]=f[x2,x1]f[x1,x0]x2x0=0.4250.054545135.5=0.4795457.5=0.06394

And,

f[x3,x2,x1]=f[x3,x2]f[x2,x1]x3x1=0.368182(0.425)211=0.7931829=0.08813

And,

f[x4,x3,x2]=f[x4,x3]f[x3,x2]x4x2=2.1660.368182113=1.79781812=0.14982

Similarly,

f[x5,x4,x3]=0.13535f[x6,x5,x4]=0.147683f[x7,x6,x5]=0.05104

The third divided difference is,

f[x3,x2,x1,x0]=f[x3,x2,x1]f[x2,x1,x0]x3x0=(0.08813)(0.06394)25.5=0.024193.5=0.00691143

And,

f[x4,x3,x2,x1]=f[x4,x3,x2]f[x3,x2,x1]x4x1=(0.14982)(0.08813)111=0.0616910=0.006169

Similarly,

f[x5,x4,x3,x2]=0.004822f[x6,x5,x4,x3]=0.0061665f[x7,x6,x5,x4]=0.005513

The fourth divided difference is,

f[x4,x3,x2,x1,x0]=f[x4,x3,x2,x1]f[x3,x2,x1,x0]x4x0=(0.006169)(0.00691143)15.5=0.000742434.5=0.000165

And,

f[x5,x4,x3,x2,x1]=f[x5,x4,x3,x2]f[x4,x3,x2,x1]x5x1=(0.004822)(0.006169)1611=0.0013475=0.0002694

And,

f[x6,x5,x4,x3,x2]=f[x6,x5,x4,x3]f[x5,x4,x3,x2]x6x2=(0.0061665)(0.004822)013=0.001344513=0.0001034

And,

f[x7,x6,x5,x4,x3]=f[x7,x6,x5,x4]f[x6,x5,x4,x3]x7x3=(0.005513)(0.0061665)182=0.000653516=0.00004084

The fifth divided difference is,

f[x5,x4,x3,x2,x1,x0]=f[x5,x4,x3,x2,x1]f[x4,x3,x2,x1,x0]x5x0=(0.0002694)(0.000165)165.5=0.000434410.5=0.0000414

And,

f[x6,x5,x4,x3,x2,x1]=f[x6,x5,x4,x3,x2]f[x5,x4,x3,x2,x1,x0]x6x1=(0.0001034)(0.0002694)011=0.00016611=0.0000151

And,

f[x7,x6,x5,x4,x3,x2]=f[x7,x6,x5,x4,x3]f[x6,x5,x4,x3,x2]x7x2=(0.00004048)(0.0001034)1813=0.000143885=0.000028776

The sixth divided difference is,

f[x6,x5,x4,x3,x2,x1,x0]=f[x6,x5,x4,x3,x2,x1]f[x5,x4,x3,x2,x1,x0]x6x0=(0.0000151)(0.0000414)05.5=0.00005655.5=0.0000103

And,

f[x7,x6,x5,x4,x3,x2,x1]=f[x7,x6,x5,x4,x3,x2]f[x6,x5,x4,x3,x2,x1]x7x1=(0.0000288776)(0.0000151)1811=0.000013787=0.000002

The seventh divided difference is,

f[x7,x6,x5,x4,x3,x2,x1,x0]=f[x7,x6,x5,x4,x3,x2,x1]f[x6,x5,x4,x3,x2,x1,x0]x7x0=(0.000002)(0.0000103)185.5=0.000012312.5=0.000001

Therefore, the difference table can be summarized as,

i xi f(xi) First Second Third Fourth Fifth Sixth 7th
0 1 2 3 4 5 6 7 5.5 11 13 2 1 16 0 18 9.9 10.2 9.35 5.3 3.134 7.2 0.5 6.2 0.054545-0.425 0.3682 2.166 0.2711 0.4188 0.3167 0.06394 0.08813 0.14982 0.13535 0.14768 0.05104 0.0069 0.0062 0.0048 0.0062 0.0055 0.0002 0.0003 0.0001 0.00004 0.00004 0.00002 0.00003 0.00001 0.000002 0.00

Since, the divided difference of fifth order is nearly equals to zero. So, the fourth-order polynomial is the optimal.

Therefore, the zero-order Newton’s interpolation polynomial is,

f0(x)=9.9

Thus, the value of y at x=8 is,

y=9.9

The first-order Newton’s interpolation polynomial is:

f1(x)=9.9+0.054545(x5.5)

Thus, the value of y at x=8 is,

y=9.9+0.054545(85.5)=9.9+0.054545×2.5=9.9+0.1363625=10.036

The second- order Newton’s interpolating polynomial is,

f2(x)=9.9+0.054545(x5.5)0.06394(x5.5)(x11)

Thus, the value of y at x=8 is,

y=9.9+0.054545(85.5)0.06394(85.5)(811)=10.0360.06394×2.5×(3)=10.036+0.47955=10.516

The third-order Newton’s interpolating polynomial is,

f3(x)={9.9+0.054545(x5.5)0.06394(x5.5)(x11)+0.0069(x5.5)(x11)(x13)}

Thus, the value of y at x=8 is,

y={9.9+0.054545(85.5)0.06394(85.5)(811)+0.0069(85.5)(811)(813)}=10.516+0.0069×2.5×(3)×(5)=10.775

The fourth-order Newton’s interpolating polynomial is,

f4(x)={9.9+0.054545(x5.5)0.06394(x5.5)(x11)+0.0069(x5.5)(x11)(x13)+0.000165(x5.5)(x11)(x13)(x2)}

Thus, the value of y at x=8 is,

y={9.9+0.054545(85.5)0.06394(85.5)(811)+0.0069(85.5)(811)(813)+0.000165(85.5)(811)(813)(82)}=10.775+0.000165×2.5×(3)×(5)×6=10.812

Hence, the value of y at x=8 by zero order Newton’s interpolating polynomial is 9.9, by first order Newton’s interpolating polynomial is 10.036, by second order Newton’s interpolating polynomial is 10.516, by third order Newton’s interpolating polynomial is 10.775 and by fourth order Newton’s interpolating polynomial is 10.812

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
With the given data points below, use every method in Polynomial Approximation and Interpolation to evaluate a) P'(3.5) and b) P''(3.5) in six decimal places. Newton Forward Difference Newton Backward Difference

Chapter 18 Solutions

Numerical Methods for Engineers

Additional Math Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Power Series; Author: Professor Dave Explains;https://www.youtube.com/watch?v=OxVBT83x8oc;License: Standard YouTube License, CC-BY
Power Series & Intervals of Convergence; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=XHoRBh4hQNU;License: Standard YouTube License, CC-BY