
Concept explainers
(a)
To determine: The type of reaction in which leucine is converted to α-ketoisocaproate.
Introduction:
The series of
β-oxidation is the oxidation of fatty acids in cells in absence of glucose and glycogen, to produce ATP. Oxidation takes place at the β carbon, thus, this reaction is termed as β-oxidation.
(a)

Explanation of Solution
Pictorial representation: Fig. 1 represents the transamination reaction.
Fig. 1: Transamination reaction.
Explanation:
The transamination reaction is involved in the conversion of leucine into alpha ketoisocaproate. The co-factor involved in this reaction is PLP (pyridoxal phosphate). There is no analogous reaction to this reaction from citric acid cycle and β-oxidation.
(b)
To determine: The type of reaction in which Ketoisocaproate is converted to Isovaleryl-CoA.
Introduction:
The series of metabolic reactions, in which the energy stored in the compounds is released for the production of ATP (adenosine triphosphate), is called “Krebs’s cycle”. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A) in the presence of oxygen. β-oxidation is the oxidation of fatty acids in cells in absence of glucose and glycogen, to produce ATP. Oxidation takes place at the β carbon, thus, this reaction is termed as β-oxidation.
(b)

Explanation of Solution
Pictorial representation: Fig. 2 represents the oxidative decarboxylation.
Fig. 2: Oxidative decarboxylation.
Explanation:
The oxidative decarboxylation is occurring that converts Ketoisocaproate to Isovaleryl-CoA. The cofactors involved are “NAD+ (Nicotinamide adenine dinucleotide)”, “TPP (Triphenyl phosphate)” and “FAD (Flavin adenine dinucleotide)”, and “lipoate”. The formation of acetyl CoA by oxidative decarboxylation of pyruvate is similar to this given reaction.
(c)
To determine: The type of reaction in which Isovaleryl-CoA is converted to β-methylcrotonyl-CoA.
Introduction:
The series of metabolic reactions, in which the energy stored in the compounds is released for the production of ATP (adenosine triphosphate), is called “Krebs’s cycle”. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A) in the presence of oxygen.
β-oxidation is the oxidation of fatty acids in cells in absence of glucose and glycogen, to produce ATP. Oxidation takes place at the β carbon, thus, this reaction is termed as β-oxidation.
(c)

Explanation of Solution
Pictorial representation: Fig. 3 represents the dehydrogenation reaction.
Fig. 3: Dehydrogenation reaction.
Explanation:
The type of reaction in which Isovaleryl-CoA is converted to β-methylcrotonyl-CoA is dehydrogenation. The cofactor is (FAD) Flavin adenine
(d)
To determine: The type of reaction in which beta methylcrotonyl-CoA is converted to beta-methylglutaconyl-CoA.
Introduction:
The series of metabolic reactions, in which the energy stored in the compounds is released for the production of ATP (adenosine triphosphate), is called “Krebs’s cycle”. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A) in the presence of oxygen. β-oxidation is the oxidation of fatty acids in cells in absence of glucose and glycogen, to produce ATP. Oxidation takes place at the β carbon, thus, this reaction is termed as β-oxidation.
(d)

Explanation of Solution
Pictorial representation: Fig. 4 represents the carboxylation reaction.
Fig. 4: Carboxylation reaction.
Explanation:
The formation of β-methylglutaconyl-CoA by β-methylcrotonyl-CoA is a type of carboxylation reaction. The cofactors are biotin and ATP. This step is not analogous to any step in β-oxidation and citric acid cycle.
(e)
To determine: The type of reaction in which beta-methylglutaconyl-CoA is converted to β-hydroxy β-methylglutaryl-CoA.
Introduction:
The series of metabolic reactions, in which the energy stored in the compounds is released for the production of ATP (adenosine triphosphate), is called “Krebs’s cycle”. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A) in the presence of oxygen. β-oxidation is the oxidation of fatty acids in cells in absence of glucose and glycogen, to produce ATP. Oxidation takes place at the β carbon, thus, this reaction is termed as β-oxidation.
(e)

Explanation of Solution
Pictorial representation: Fig. 5 represents the hydration reaction.
Fig. 5: Hydration reaction.
Explanation:
The conversion of beta-methylglutaconyl-CoA into β-hydroxy β-methylglutaryl-CoA is a type of hydration reaction. This reaction does not require the cofactors. The formation of malate by fumarate and formation of 3-hydroxyacyl-CoA by enoyl-CoA are analogous to this given reaction.
(f)
To determine: The type of reaction in which β-hydroxy β-methylglutaryl-CoA is converted to acetyl-CoA and acetoacetate.
Introduction:
The series of metabolic reactions, in which the energy stored in the compounds is released for the production of ATP (adenosine triphosphate), is called “Krebs’s cycle”. The pyruvate undergoes series of reactions in the citric acid cycle and converts into Acetyl CoA (acetyl coenzyme A) in the presence of oxygen.
β-oxidation is the oxidation of fatty acids in cells in absence of glucose and glycogen, to produce ATP. Oxidation takes place at the β carbon, thus, this reaction is termed as β-oxidation.
(f)

Explanation of Solution
Pictorial representation: Fig. 6 represents the reverse aldol reaction.
Fig. 6: Reverse aldol reaction.
Explanation:
The formation of acetate-CoA and acetoacetate by β-hydroxy β-methylglutaryl-CoA is a type of reverse aldol reaction. There are no cofactors involved in this reaction. The analogous reaction is the opposite reaction involving citrate synthase. This reaction is analogous to citrate synthase reaction in the citric acid cycle. It is identical to the cleavage of β-hydroxy-β-methylglutaryl-CoA in the formation of
Want to see more full solutions like this?
Chapter 18 Solutions
EBK LEHNINGER PRINCIPLES OF BIOCHEMISTR
- Can u show the process as to how to get these?arrow_forwardSketch the expected 'H NMR spectra for the following compound. Label all of the H's in the structure and the corresponding signal for the spectra you sketch. Make sure you include the integration value and the splitting pattern for each signal Indicate how many signals you would expect in the 13C NMRarrow_forwardUse IUPAC naming rules to name the following hydrocarbon compounds: CH2-CH3 | a) CH-CH-CH2-CH-CH-CH3 b) | CH2 CH3 | CH3 CH3 \ / C=C H 1 H CH2-CH3 c) d) CH=C-CH3 e) CH3-CH2-CH2-CH=CH-CH3 f) CH2=CH-CH2-CH=CH-CH3 g) CH3-CH2-C = C-CH2-CH3 h)arrow_forward
- Q5 Name the following : a. b. C. d. e.arrow_forward25. Predict the major product of the following reaction. 1 equivalent of each of the starting materials was used. H₂C CH3 CH3 H3C H3C H3C. CH2 + H3C. heat CH3 CH H.C. CH3 H.C H.C CH3 CH CH3 CH3 A B C Earrow_forwardFind chemical structures based on the below information. a) Chemical formula C6H8O Compound is aromatic plus has two 1H NMR peaks that integrated for 3 each that are singlets (it could have more peaks in the 1H NMR b) Chemical Formula: C6H100 Compounds is conjugated 'H NMR has a signal that integrates for 6 and is a doublet IR spectra has a signal at 1730 cm-1arrow_forward
- Jaslev Propose a synthesis of the following starting from benzene and any other reagents and chemicals. No mechanisms are required. Indicate the condition for each step plus the major product for each step. More than two steps are required. Step 1 Step 2 مہد Brarrow_forwardPart C: The line formula for another branched alkane is shown below. i. In the IUPAC system what is the root or base name of this compound? ii. How many alkyl substituents are attached to the longest chain? iii. Give the IUPAC name for this compound.arrow_forwardPart D: Draw the Structural Formula for 4-ethyl-2-methylhexane Part E. Draw the Structural Formula for 1-chloro-3,3-diethylpentane (Chloro = Cl)arrow_forward
- Part B: The line formula for a branched alkane is shown below. a. What is the molecular formula of this compound? Number of C. Number of H b. How many carbon atoms are in the longest chain? c. How many alkyl substituents are attached to this chain?arrow_forward24. What is the major product for the following reaction? Mg J. H.C CH H,C- Then H₂O OH Br C HO E HO H.C CH H.C- CH₂ CH₂ All of these are possiblearrow_forwardstructures. Explain why the major product(s) are formed over the minor product(s) using the Draw the major and product and the complete mechanism for all products with all resonance mechanism/resonance structures of the major and minor products in your explanation. HONO2 H2SO4arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





