Connect 2-Year Access Card for Chemistry: The Molecular Nature of Matter and Change
Connect 2-Year Access Card for Chemistry: The Molecular Nature of Matter and Change
7th Edition
ISBN: 9780078129865
Author: Martin Silberberg Dr., Patricia Amateis Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 18, Problem 18.95P

(a)

Interpretation Introduction

Interpretation:

The higher pH of the solution has to be identified from the given pairs,  0.1 M NiCl2 or 0.1 M NaCl.

Concept introduction:

An equilibrium constant (K) is the ratio of concentration of products and reactants raised to appropriate stoichiometric coefficient at equlibrium.

The reaction of any base B with water is written as,

  B(aq)+H2O(l)BH(aq)+OH(aq)

The relative strength of an acid and base in water can be also expressed quantitatively with an equilibrium constant as follows:

Kb=[BH][OH][B]

An equilibrium constant (K) with subscript b indicates that it is an equilibrium constant of the base in water.

  Acid - dissociation constants can be expressed as pKa values,pKa = -log Ka  and10 - pKa = K

Percent dissociation can be calculated by using following formula,

  Percent dissociated =  dissociationinitial×100

The Ka value is calculating by using following formula,

  Kw = Ka × Kb

Acids strength is mainly depending on the dissociation of ions, strong acids dissociates completely and weak acid dissociate slightly.

The acid strength is depending on the Ka value, if the Ka value is larger the stronger the acid and it is lower pH. if the Ka value is small the weaker the acid and it is higher pH.

(a)

Expert Solution
Check Mark

Explanation of Solution

The pH of the 0.1 M NaCl is seven because it is formed from strong hydrochloric acid and strong sodium hydroxide.

The pH of the 0.1 M NiCl2 is given below,

The Ka value of NiCl2 is 1×10–10

The Kb is calculated as follows,

  Kw = Ka × KbKb = KwKaKb = 1×10141.0×1010Kb = 1.0×104

The hydrolysis equation is given below,

  2Cl +2H2O2HCl (aq) +  2OH

Therefore,

  Ka =[x]2[x]2[Cl-]2therefore,1×104 =[x]2[x]2[0.1]2x4=1×106x=3.16×102

Therefore,

  pOH=-log(OH1)pOH=-log(3.16×102)pOH=1.5

pH calculation is given below,

  pH+pOH=14pH+1.5=14pH=12.5

Therefore, 0.1 M NiCl2 is higher pH, less acidic.

(b)

Interpretation Introduction

Interpretation:

The higher pH of the solution has to be identified in the given  0.1 M Sn(NO3)2 or 0.1 M Co(NO3)2 pairs.

Concept introduction:

An equilibrium constant (K) is the ratio of concentration of products and reactants raised to appropriate stoichiometric coefficient at equlibrium.

The reaction of any base B with water is written as,

  B(aq)+H2O(l)BH(aq)+OH(aq)

The relative strength of an acid and base in water can be also expressed quantitatively with an equilibrium constant as follows:

Kb=[BH][OH][B]

An equilibrium constant (K) with subscript b indicates that it is an equilibrium constant of the base in water.

  Acid - dissociation constants can be expressed as pKa values,pKa = -log Ka  and10 - pKa = K

Percent dissociation can be calculated by using following formula,

  Percent dissociated =  dissociationinitial×100

The Ka value is calculating by using following formula,

  Kw = Ka × Kb

Acids strength is mainly depending on the dissociation of ions, strong acids dissociates completely and weak acid dissociate slightly.

The acid strength is depending on the Ka value, if the Ka value is larger the stronger the acid and it is lower pH. if the Ka value is small the weaker the acid and it is higher pH.

(b)

Expert Solution
Check Mark

Explanation of Solution

The pH of the Sn(NO3)2 is given below,

The Ka value of Sn(NO3)2 is 4×10–4

The Kb is calculated as follows,

  Kw = Ka × KbKb = KwKaKb = 1×10144×10–4Kb = 2.5×1011

The hydrolysis equation is given below,

  2NO3 +2H2O2HNO3 (aq) +  2OH

Therefore,

  Ka =[x]2[x]2[NO3-]2therefore,2.5×1011 =[x]2[x]2[0.1]2x4=2.5×1013x=7.07×104

Therefore,

  pOH=-log(OH)pOH=-log(7.07×104)pOH=3.15

pH calculation is given below,

  pH+pOH=14pH+3.15=14pH=10.84

Therefore, Sn(NO3)2 is 11.34.

(ii) The pH of the Co(NO3)2 is given below,

The Ka value of Co(NO3)2 is 2×10–10

The Kb of acetate ion is calculated as follows,

  Kw = Ka × KbKb = KwKaKb = 1×10142×10–10Kb = 5×105

The hydrolysis equation is given below,

  2NO3 +2H2O2HNO3 (aq) +  2OH

Therefore,

  Ka =[x]2[x]2[NO3-]2therefore,5×105 =[x]2[x]2[0.1]2x4=5×107x=2.66×102

Therefore,

  pOH=-log(OH1)pOH=-log(2.66×102)pOH=1.60

pH calculation is given below,

  pH+pOH=14pH+1.60=14pH=12.39

Therefore, Co(NO3)2 is 12.39, hence Co(NO3)2 is more basic.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 18 Solutions

Connect 2-Year Access Card for Chemistry: The Molecular Nature of Matter and Change

Ch. 18.3 - The left-hand scene in the margin represents the...Ch. 18.3 - The right-hand scene depicts an aqueous solution...Ch. 18.4 - The conjugate acid of ammonia is the weak acid ....Ch. 18.4 - Prob. 18.7BFPCh. 18.4 - Cyanic acid (HOCN) is an extremely acrid, unstable...Ch. 18.4 - Prob. 18.8BFPCh. 18.4 - Prob. 18.9AFPCh. 18.4 - Prob. 18.9BFPCh. 18.4 - Prob. 18.10AFPCh. 18.4 - Prob. 18.10BFPCh. 18.6 - Pyridine (C5H5N, see the space-filling model)...Ch. 18.6 - Prob. 18.11BFPCh. 18.6 - Prob. 18.12AFPCh. 18.6 - Prob. 18.12BFPCh. 18.7 - Write equations to predict whether solutions of...Ch. 18.7 - Write equations to predict whether solutions of...Ch. 18.7 - Determine whether solutions of the following salts...Ch. 18.7 - Prob. 18.14BFPCh. 18.9 - Prob. 18.15AFPCh. 18.9 - Prob. 18.15BFPCh. 18 - Prob. 18.1PCh. 18 - Prob. 18.2PCh. 18 - Prob. 18.3PCh. 18 - What do “strong” and “weak” mean for acids and...Ch. 18 - Prob. 18.5PCh. 18 - Prob. 18.6PCh. 18 - Prob. 18.7PCh. 18 - Which of the following are Arrhenius...Ch. 18 - Prob. 18.9PCh. 18 - Prob. 18.10PCh. 18 - Prob. 18.11PCh. 18 - Prob. 18.12PCh. 18 - Use Appendix C to rank the following in order of...Ch. 18 - Prob. 18.14PCh. 18 - Classify each as a strong or weak acid or...Ch. 18 - Prob. 18.16PCh. 18 - Prob. 18.17PCh. 18 - Prob. 18.18PCh. 18 - Prob. 18.19PCh. 18 - Prob. 18.20PCh. 18 - Prob. 18.21PCh. 18 - Which solution has the higher pH? Explain. A 0.1 M...Ch. 18 - (a) What is the pH of 0.0111 M NaOH? Is the...Ch. 18 - (a) What is the pH of 0.0333 M HNO3? Is the...Ch. 18 - Prob. 18.25PCh. 18 - (a) What is the pH of 7.52×10−4 M CsOH? Is the...Ch. 18 - Prob. 18.27PCh. 18 - Prob. 18.28PCh. 18 - Prob. 18.29PCh. 18 - Prob. 18.30PCh. 18 - Prob. 18.31PCh. 18 - Prob. 18.32PCh. 18 - Prob. 18.33PCh. 18 - Prob. 18.34PCh. 18 - The two molecular scenes shown depict the relative...Ch. 18 - Prob. 18.36PCh. 18 - Prob. 18.37PCh. 18 - Prob. 18.38PCh. 18 - A Brønstcd-Lowry acid-base reaction proceeds in...Ch. 18 - Prob. 18.40PCh. 18 - Prob. 18.41PCh. 18 - Prob. 18.42PCh. 18 - Give the formula of the conjugate...Ch. 18 - Give the formula of the conjugate base: Ch. 18 - Give the formula of the conjugate...Ch. 18 - Prob. 18.46PCh. 18 - Prob. 18.47PCh. 18 - In each equation, label the acids, bases, and...Ch. 18 - Prob. 18.49PCh. 18 - Prob. 18.50PCh. 18 - Prob. 18.51PCh. 18 - Prob. 18.52PCh. 18 - Prob. 18.53PCh. 18 - The following aqueous species constitute two...Ch. 18 - Prob. 18.55PCh. 18 - Use Figure 18.8 to determine whether Kc > 1...Ch. 18 - Prob. 18.57PCh. 18 - Prob. 18.58PCh. 18 - Prob. 18.59PCh. 18 - Prob. 18.60PCh. 18 - Prob. 18.61PCh. 18 - Prob. 18.62PCh. 18 - Prob. 18.63PCh. 18 - Prob. 18.64PCh. 18 - Prob. 18.65PCh. 18 - Prob. 18.66PCh. 18 - Prob. 18.67PCh. 18 - Prob. 18.68PCh. 18 - Hypochlorous acid, HClO, has a pKa of 7.54. What...Ch. 18 - Prob. 18.70PCh. 18 - Prob. 18.71PCh. 18 - Prob. 18.72PCh. 18 - Prob. 18.73PCh. 18 - Prob. 18.74PCh. 18 - Prob. 18.75PCh. 18 - Prob. 18.76PCh. 18 - Prob. 18.77PCh. 18 - Prob. 18.78PCh. 18 - Prob. 18.79PCh. 18 - Prob. 18.80PCh. 18 - Prob. 18.81PCh. 18 - Prob. 18.82PCh. 18 - Formic acid, HCOOH, the simplest carboxylic acid,...Ch. 18 - Across a period, how does the electronegativity of...Ch. 18 - How does the atomic size of a nonmetal affect the...Ch. 18 - Prob. 18.86PCh. 18 - Prob. 18.87PCh. 18 - Prob. 18.88PCh. 18 - Prob. 18.89PCh. 18 - Choose the stronger acid in each of the following...Ch. 18 - Prob. 18.91PCh. 18 - Prob. 18.92PCh. 18 - Prob. 18.93PCh. 18 - Use Appendix C to choose the solution with the...Ch. 18 - Prob. 18.95PCh. 18 - Prob. 18.96PCh. 18 - Prob. 18.97PCh. 18 - Prob. 18.98PCh. 18 - Prob. 18.99PCh. 18 - Prob. 18.100PCh. 18 - Prob. 18.101PCh. 18 - Prob. 18.102PCh. 18 - Prob. 18.103PCh. 18 - Prob. 18.104PCh. 18 - Prob. 18.105PCh. 18 - Prob. 18.106PCh. 18 - Prob. 18.107PCh. 18 - Prob. 18.108PCh. 18 - What is the pKb of ? What is the pKa of the...Ch. 18 - Prob. 18.110PCh. 18 - Prob. 18.111PCh. 18 - Prob. 18.112PCh. 18 - Prob. 18.113PCh. 18 - Prob. 18.114PCh. 18 - Prob. 18.115PCh. 18 - Prob. 18.116PCh. 18 - Prob. 18.117PCh. 18 - Prob. 18.118PCh. 18 - Prob. 18.119PCh. 18 - Prob. 18.120PCh. 18 - Prob. 18.121PCh. 18 - Prob. 18.122PCh. 18 - Prob. 18.123PCh. 18 - Prob. 18.124PCh. 18 - Explain with equations and calculations, when...Ch. 18 - Prob. 18.126PCh. 18 - Prob. 18.127PCh. 18 - Rank the following salts in order of increasing pH...Ch. 18 - Rank the following salts in order of decreasing pH...Ch. 18 - Prob. 18.130PCh. 18 - Prob. 18.131PCh. 18 - Prob. 18.132PCh. 18 - Prob. 18.133PCh. 18 - Prob. 18.134PCh. 18 - Prob. 18.135PCh. 18 - Prob. 18.136PCh. 18 - Prob. 18.137PCh. 18 - Prob. 18.138PCh. 18 - Prob. 18.139PCh. 18 - Which are Lewis acids and which are Lewis...Ch. 18 - Prob. 18.141PCh. 18 - Prob. 18.142PCh. 18 - Prob. 18.143PCh. 18 - Prob. 18.144PCh. 18 - Classify the following as Arrhenius,...Ch. 18 - Chloral (Cl3C—CH=O) forms a monohydrate, chloral...Ch. 18 - Prob. 18.147PCh. 18 - Prob. 18.148PCh. 18 - Prob. 18.149PCh. 18 - Prob. 18.150PCh. 18 - Prob. 18.151PCh. 18 - Prob. 18.152PCh. 18 - Prob. 18.153PCh. 18 - Prob. 18.154PCh. 18 - The strength of an acid or base is related to its...Ch. 18 - Prob. 18.156PCh. 18 - Three beakers contain 100. mL of 0.10 M HCl,...Ch. 18 - Prob. 18.158PCh. 18 - Prob. 18.159PCh. 18 - Prob. 18.160PCh. 18 - Prob. 18.161PCh. 18 - Prob. 18.162PCh. 18 - What is the pH of a vinegar with 5.0% (w/v) acetic...Ch. 18 - Prob. 18.164PCh. 18 - Prob. 18.165PCh. 18 - Prob. 18.166PCh. 18 - Prob. 18.167PCh. 18 - Prob. 18.168PCh. 18 - Prob. 18.169PCh. 18 - Prob. 18.170PCh. 18 - Prob. 18.171PCh. 18 - Prob. 18.172PCh. 18 - Prob. 18.173PCh. 18 - Prob. 18.174PCh. 18 - Prob. 18.175PCh. 18 - Prob. 18.176PCh. 18 - Prob. 18.177PCh. 18 - Prob. 18.178PCh. 18 - Prob. 18.179PCh. 18 - Prob. 18.180PCh. 18 - Prob. 18.181PCh. 18 - Prob. 18.182PCh. 18 - Prob. 18.183PCh. 18 - Prob. 18.184PCh. 18 - Drinking water is often disinfected with Cl2,...Ch. 18 - Prob. 18.186P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY