BIO A person at rest inhales 0.50 L of air with each breath at a pressure of 1.00 atm and a temperature of 20.0°C. The inhaled air is 21.0% oxygen. (a) How many oxygen molecules does this person inhale with each breath? (b) Suppose this person is now resting at an elevation of 2000 m but the temperature is still 20.0°C. Assuming that the oxygen percentage and volume per inhalation are the same as stated above, how many oxygen molecules does this person now inhale with each breath? (c) Given that the body still requires the same number of oxygen molecules per second as at sea level to maintain its functions, explain why some people report “shortness of breath” at high elevations.
BIO A person at rest inhales 0.50 L of air with each breath at a pressure of 1.00 atm and a temperature of 20.0°C. The inhaled air is 21.0% oxygen. (a) How many oxygen molecules does this person inhale with each breath? (b) Suppose this person is now resting at an elevation of 2000 m but the temperature is still 20.0°C. Assuming that the oxygen percentage and volume per inhalation are the same as stated above, how many oxygen molecules does this person now inhale with each breath? (c) Given that the body still requires the same number of oxygen molecules per second as at sea level to maintain its functions, explain why some people report “shortness of breath” at high elevations.
BIO A person at rest inhales 0.50 L of air with each breath at a pressure of 1.00 atm and a temperature of 20.0°C. The inhaled air is 21.0% oxygen. (a) How many oxygen molecules does this person inhale with each breath? (b) Suppose this person is now resting at an elevation of 2000 m but the temperature is still 20.0°C. Assuming that the oxygen percentage and volume per inhalation are the same as stated above, how many oxygen molecules does this person now inhale with each breath? (c) Given that the body still requires the same number of oxygen molecules per second as at sea level to maintain its functions, explain why some people report “shortness of breath” at high elevations.
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
No chatgpt pls will upvote
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.