Concept explainers
A constant
(a)
Interpretation:
Need to calculate the amount of copper deposited and current needed to electrolyze the cell containing CuCl2 connected in series with the cell containing AgNO3.
Concept introduction:
In the given case two electrolytic cell containing AgNO3 and CuCl2 were connected in series, so the quantity of electricity flowing through both of the cell will be same
Half-cell reaction for cell-1 was given below.
The amount of the silver deposited was given, from which the amount of electricity flows though both of the cell can be calculated in steps. Number of moles of silver deposited was calculated first. Since one mole of electron is needed to reduce one mole of Ag+. Therefore number of moles of electron is equal to number of moles of sliver. The coulombs of electron passing can be calculated by the equation given below.
Half-cell reaction for cell-2 was given below.
Since they are connected in series, same amount of charges will be passing through both the cell. From the calculated charges the number of moles of electrons utilized can be calculated.
From the cell reaction it was known that two mole of electron will be needed to produce one mole of copper,
So
Since time was given the amperes of current flowing through the circuit can be calculated by the equation given below
To find: The amount of copper deposited and current consumed in a CuCl2 cell connected in series with the cell containing AgNO3.
Answer to Problem 18.54QP
Since cells containing AgNO3 and CuCl2 were connected in series, the same amount of electricity will pass through both of them. So first let us calculate the coulombs of charges passed through the AgNO3 cell, from the quantity of silver deposited.
Since one mole of electron is needed for the reduction of one mole of Ag+
Then
As state above the coulombs of current passing through the CuCl2 cell also will be
Then
Explanation of Solution
Since cells containing AgNO3 and CuCl2 were connected in series, the same amount of electricity will pass through both of them. So first let us calculate the coulombs of charges passed through the AgNO3 cell, which resulted in the deposition of 2.0 g of silver.
Since one mole of electron is needed for the reduction of one mole of Ag+
Then
As state above the coulombs of charges passing through the CuCl2 cell also will be
In the present case the quantity of silver deposited upon electrolysis of AgNO3 was given, from that the quantity of charges consumed was calculated and utilized for the determination of mass of Cu deposited in the second cell.
(b)
Interpretation:
Need to calculate the amount of copper deposited and current needed to electrolyze the cell containing CuCl2 connected in series with the cell containing AgNO3.
Concept introduction:
In the given case two electrolytic cell containing AgNO3 and CuCl2 were connected in series, so the quantity of electricity flowing through both of the cell will be same
Half-cell reaction for cell-1 was given below.
The amount of the silver deposited was given, from which the amount of electricity flows though both of the cell can be calculated in steps. Number of moles of silver deposited was calculated first. Since one mole of electron is needed to reduce one mole of Ag+. Therefore number of moles of electron is equal to number of moles of sliver. The coulombs of electron passing can be calculated by the equation given below.
Half-cell reaction for cell-2 was given below.
Since they are connected in series, same amount of charges will be passing through both the cell. From the calculated charges the number of moles of electrons utilized can be calculated.
From the cell reaction it was known that two mole of electron will be needed to produce one mole of copper,
So
Since time was given the amperes of current flowing through the circuit can be calculated by the equation given below
To find: The amount of copper deposited and current consumed in a CuCl2 cell connected in series with the cell containing AgNO3.
Answer to Problem 18.54QP
The amount of current passing through the CuCl2 cell for 3.75 h can calculate as follows
Time = 3.75 h or 13500 s
Explanation of Solution
The amount of current passing through the CuCl2 cell for 3.75 h can calculate as follows
Time = 3.75h or 13500s.
On dividing the coulombs of charges produced by time in seconds the amount of current passing through the second cell was calculated as 0.1325A.
Want to see more full solutions like this?
Chapter 18 Solutions
Chemistry: Atoms First V1
- A solution contains the ions H+, Ag+, Pb2+, and Ba2+, each at a concentration of 1.0 M. (a) Which of these ions would be reduced first at the cathode during an electrolysis? (b) After the first ion has been completely removed by electrolysis, which is the second ion to be reduced? (c) Which, if any, of these ions cannot be reduced by the electrolysis of the aqueous solution?arrow_forwardAn electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardCalcium metal can be obtained by the direct electrolysis of molten CaCl2, at a voltage of 3.2 V. (a) How many joules of electrical energy are required to obtain 12.0 1b of calcium? (b) What is the cost of the electrical energy obtained in (a) if electrical energy is sold at the rate of nine cents per kilowatt hour?arrow_forward
- What is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forwardFor each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forward
- Consider the following cell running under standard conditions: Fe(s)Fe2+(aq)Al3+(aq)Al(s) a Is this a voltaic cell? b Which species is being reduced during the chemical reaction? c Which species is the oxidizing agent? d What happens to the concentration of Fe3+(aq) as the reaction proceeds? e How does the mass of Al(s) change as the reaction proceeds?arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forward
- a Calculate G for the following cell reaction: Tl(s)Tl+(aq)Pb2+(aq)Pb(s) The Gf for Tl+(aq) is 32.4 kJ/mol. b From G, calculate the standard cell potential for the cell reaction and from this, determine the standard potential for Tl2+(aq)+eTl(s).arrow_forwardUse the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forwardA potassium chloride solution is electrolyzed by passing a current through the solution using inert electrodes. A gas evolves at each electrode, and there is a large increase in pH of the solution. Write the half-reactions that occur at the anode and at the cathode.arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning