Concept explainers
(a)
Interpretation:
A steroid is to be classified as saponifiable or nonsaponifiable lipid.
Concept introduction:
Lipids are one of those macromolecular substances that are present in the living cell. The cell membrane of the living cell is made up of lipids. The lipids have a greasy, waxy and oily texture. The lipids are insoluble in water. They include natural oils, waxes, and steroids.

Answer to Problem 18.4E
A steroid is a nonsaponifiable lipid.
Explanation of Solution
A hydrolysis reaction carried out in a basic solution is known as saponification reaction. The term saponifiable lipids indicate the lipids that can undergo saponification reaction. The lipids that have ester group are saponifiable lipids. The basic structure of steroid is composed of three six-member ring and one five-member ring. The steroid ring system is shown below.
Figure 1
The basic structure of steroid does not have any ester group. Therefore, a steroid is a nonsaponifiable lipid.
A steroid is a nonsaponifiable lipid.
(b)
Interpretation:
Wax is to be classified as saponifiable or nonsaponifiable lipid.
Concept introduction:
Lipids are one of those macromolecular substances that are present in the living cell. The cell membrane of the living cell is made up of lipids. The lipids have a greasy, waxy and oily texture. The lipids are insoluble in water. They include natural oils, waxes, and steroids.

Answer to Problem 18.4E
Wax is a saponifiable lipid.
Explanation of Solution
A hydrolysis reaction carried out in a basic solution is known as saponification reaction. The term saponifiable lipids indicate the lipids that can undergo saponification reaction. The lipids that have ester group are saponifiable lipids. The wax is an ester of long-chain alcohol and a fatty acid. The structure of a simple wax that is beeswax is shown below.
Figure 2
The basic structure of wax has an ester group. Therefore, wax is a saponifiable lipid.
Wax is a saponifiable lipid.
(c)
Interpretation:
A triglyceride is to be classified as saponifiable or nonsaponifiable lipid.
Concept introduction:
Lipids are one of those macromolecular substances that are present in the living cell. The cell membrane of the living cell is made up of lipids. The lipids have a greasy, waxy and oily texture. The lipids are insoluble in water. They include natural oils, waxes, and steroids.

Answer to Problem 18.4E
A triglyceride is a saponifiable lipid.
Explanation of Solution
A hydrolysis reaction carried out in a basic solution is known as saponification reaction. The term saponifiable lipids indicate the lipids that can undergo saponification reaction. The lipids that have ester group are saponifiable lipids. The triglyceride is formed from glycerol and three fatty acids with ester bonds. The general structure of triglyceride is shown below.
Figure 3
The basic structure of triglyceride has ester groups. Therefore, a triglyceride is a saponifiable lipid.
A triglyceride is a saponifiable lipid.
(d)
Interpretation:
A phosphoglyceride is to be classified as saponifiable or nonsaponifiable lipids.
Concept introduction:
Lipids are one of those macromolecular substances that are present in the living cell. The cell membrane of the living cell is made up of lipids. The lipids have a greasy, waxy and oily texture. The lipids are insoluble in water. They include natural oils, waxes, and steroids.

Answer to Problem 18.4E
A phosphoglyceride is a saponifiable lipid.
Explanation of Solution
A hydrolysis reaction carried out in a basic solution is known as saponification reaction. The term saponifiable lipids indicate the lipids that can undergo saponification reaction. The lipids that have ester group are saponifiable lipids. The structure of phosphoglyceride is similar to that of a triglyceride. The only difference between triglyceride and phosphoglyceride is that on the third carbon of glycerol, a phosphate group is attached in the phosphoglyceride. The general structure of phosphoglyceride is shown below.
Figure 4
The basic structure of phosphoglyceride has ester groups. Therefore, a phosphoglyceride is a saponifiable lipid.
A phosphoglyceride is a nonsaponifiable lipid.
(e)
Interpretation:
A glycolipid is to be classified as saponifiable or nonsaponifiable lipid.
Concept introduction:
Lipids are one of those macromolecular substances that are present in the living cell. The cell membrane of the living cell is made up of lipids. The lipids have a greasy, waxy and oily texture. The lipids are insoluble in water. They include natural oils, waxes, and steroids.

Answer to Problem 18.4E
A glycolipid is a saponifiable lipid.
Explanation of Solution
A hydrolysis reaction carried out in a basic solution is known as saponification reaction. The term saponifiable lipids indicate the lipids that can undergo saponification reaction. The lipids that have ester group are saponifiable lipids. The glycolipid contains carbohydrate in it. The glycolipids are also termed as cerebroside as they are present in the brain. The typical structure of glycolipid (cerebroside) is shown below.
Figure 5
The basic structure of glycolipid does not have an ester group but they have an amide group that can undergo saponification. Therefore, a glycolipid is a saponifiable lipid.
A glycolipid is a saponifiable lipid.
(f)
Interpretation:
A prostaglandin is to be classified as saponifiable or nonsaponifiable lipid.
Concept introduction:
Lipids are one of those macromolecular substances that are present in the living cell. The cell membrane of the living cell is made up of lipids. The lipids have a greasy, waxy and oily texture. The lipids are insoluble in water. They include natural oils, waxes, and steroids.

Answer to Problem 18.4E
Prostaglandin is a nonsaponifiable lipid.
Explanation of Solution
A hydrolysis reaction carried out in a basic solution is known as saponification reaction. The term saponifiable lipids indicate the lipids that can undergo saponification reaction. The lipids that have ester group are saponifiable lipids. The basic structure prostaglandin is composed of a five-member ring with two substituted carbon chain. The structure of prostaglandin
Figure 6
The basic structure of prostaglandin does not have an ester group. Therefore, a prostaglandin is a nonsaponifiable lipid.
Prostaglandin is a nonsaponifiable lipid.
Want to see more full solutions like this?
Chapter 18 Solutions
Bundle: Chemistry For Today: General, Organic, And Biochemistry, 9th + Owlv2 With Mindtap Reader, 1 Term (6 Months) Printed Access Card
- Predict the major products of this organic reaction: H OH 1. LiAlH4 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. G C टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C-C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 CI MgCl ? Will the first product that forms in this reaction create a new CC bond? Yes No MgBr ? Will the first product that forms in this reaction create a new CC bond? Yes No G टेarrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. དྲ。 ✗MgBr ? O CI Will the first product that forms in this reaction create a new C-C bond? Yes No • ? Will the first product that forms in this reaction create a new CC bond? Yes No × : ☐ Xarrow_forward
- Predict the major products of this organic reaction: OH NaBH4 H ? CH3OH Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. ☐ : Sarrow_forwardPredict the major products of this organic reaction: 1. LIAIHA 2. H₂O ? Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry. Click and drag to start drawing a structure. X : ☐arrow_forwardFor each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forward
- As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forwardgive example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward
- 2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning




