Meteorology. The vapor pressure is the pressure of the vapor phase of a substance when it is in equilibrium with the solid or liquid phase of the substance. The relative humidity is the partial pressure of water vapor in the air divided by the vapor pressure of water at that same temperature, expressed as a percentage. The air is saturated when the humidity is 100%. (a) The vapor pressure of water at 20.0°C is 2.34 × 10 3 Pa. If the air temperature is 20.0°C and the relative humidity is 60%, what is the partial pressure of water vapor in the atmosphere (that is, the pressure due to water vapor alone)? (b) Under the conditions of part (a), what is the mass of water in 1.00 m 3 of air? (The molar mass of water is 18.0 g/mol. Assume that water vapor can be treated as an ideal gas.)
Meteorology. The vapor pressure is the pressure of the vapor phase of a substance when it is in equilibrium with the solid or liquid phase of the substance. The relative humidity is the partial pressure of water vapor in the air divided by the vapor pressure of water at that same temperature, expressed as a percentage. The air is saturated when the humidity is 100%. (a) The vapor pressure of water at 20.0°C is 2.34 × 10 3 Pa. If the air temperature is 20.0°C and the relative humidity is 60%, what is the partial pressure of water vapor in the atmosphere (that is, the pressure due to water vapor alone)? (b) Under the conditions of part (a), what is the mass of water in 1.00 m 3 of air? (The molar mass of water is 18.0 g/mol. Assume that water vapor can be treated as an ideal gas.)
Meteorology. The vapor pressure is the pressure of the vapor phase of a substance when it is in equilibrium with the solid or liquid phase of the substance. The relative humidity is the partial pressure of water vapor in the air divided by the vapor pressure of water at that same temperature, expressed as a percentage. The air is saturated when the humidity is 100%. (a) The vapor pressure of water at 20.0°C is 2.34 × 103 Pa. If the air temperature is 20.0°C and the relative humidity is 60%, what is the partial pressure of water vapor in the atmosphere (that is, the pressure due to water vapor alone)? (b) Under the conditions of part (a), what is the mass of water in 1.00 m3 of air? (The molar mass of water is 18.0 g/mol. Assume that water vapor can be treated as an ideal gas.)
In the figure below, what is the net resistance of the circuit connected to the battery? Assume that all resistances in the circuit is equal to 14.00 kΩ. Thank you.
Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.
3
4
Find the currents flowing in the circuit in the figure below. (Assume the resistances are R₁ =6, R₂ = 20, R₂ = 10 N, R₁ = 8, r₁ = 0.75 0, r2=0.50, 3
× A
× A
I,
= 3.78
12
13
= 2.28
=
1.5
× A
R₁
b
a
R₁₂
w
C
1,
12
13
R₂
E3
12 V
E₁
18 V
g
Ez
3.0 V
12
Ea
شرة
R₁
e
24 V
d
= 0.25 0, and 4
=
0.5 0.)
In the circuit shown below Ɛ = 66.0 V, R5 = 4.00 £2, R3 = 2.00 N, R₂ = 2.20 N, I5 = 11.41 A, I = 10.17 A, and d I₁ = 6.88 A. Find the current through R2 and R3, and the values of the resistors R₁ and R. (Due to the nature of this
problem, do not use rounded intermediate values—including answers submitted in WebAssign-in your calculations.)
12
= 8.12
A
RA
=
-1.24
Based on the known variables, which two junctions should you consider to find the current I3? A
9.59
Which loop will give you an equation with just R₁ as the unknown? Did you follow the sign convention for the potential difference across each element in the loop?
6.49
Which loop will give you an equation with just R as the unknown? Did you follow the sign convention for the potential difference across each element in the loop? N
R₁
ww
R₂
www
R4
ww
14
15
www
R5
www
R3
Chapter 18 Solutions
University Physics with Modern Physics, Volume 1 (Chs. 1-20) (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY