EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100461262
Author: SERWAY
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.40P
The overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends, (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent antinodes for this mode of vibration.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please solve
No chatgpt pls
Please solve
Chapter 18 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 18 - Prob. 18.1QQCh. 18 - Consider the waves in Figure 17.8 to be waves on a...Ch. 18 - When a standing wave is set up on a string fixed...Ch. 18 - Prob. 18.4QQCh. 18 - Balboa Park in San Diego has an outdoor organ....Ch. 18 - In figure OQ18.1 (page 566), a sound wave of...Ch. 18 - A string of length L, mass pet unit length , and...Ch. 18 - In Example 18.1, we investigated an oscillator at...Ch. 18 - Prob. 18.4OQCh. 18 - A flute has a length of 58.0 cm. If the speed of...
Ch. 18 - When two tuning forks are sounded at the same...Ch. 18 - A tuning fork is known to vibrate with frequency...Ch. 18 - An archer shoots an arrow horizontally from the...Ch. 18 - As oppositely moving pulses of the same shape (one...Ch. 18 - Prob. 18.10OQCh. 18 - Suppose all six equal-length strings of an...Ch. 18 - Assume two identical sinusoidal waves are moving...Ch. 18 - Prob. 18.1CQCh. 18 - When two waves interfere constructively or...Ch. 18 - Prob. 18.3CQCh. 18 - What limits the amplitude of motion of a real...Ch. 18 - Prob. 18.5CQCh. 18 - An airplane mechanic notices that the sound from a...Ch. 18 - Despite a reasonably steady hand, a person often...Ch. 18 - Prob. 18.8CQCh. 18 - Does the phenomenon of wave interference apply...Ch. 18 - Two waves are traveling in the same direction...Ch. 18 - Two wave pulses A and B are moving in opposite...Ch. 18 - Two waves on one string are described by the wave...Ch. 18 - Two pulses of different amplitudes approach each...Ch. 18 - A tuning fork generates sound waves with a...Ch. 18 - The acoustical system shown in Figure OQ18.1 is...Ch. 18 - Two pulses traveling on the same string are...Ch. 18 - Two identical loudspeakers are placed on a wall...Ch. 18 - Two traveling sinusoidal waves are described by...Ch. 18 - Why is the following situation impossible? Two...Ch. 18 - Two sinusoidal waves on a string are defined by...Ch. 18 - Two identical sinusoidal waves with wavelengths of...Ch. 18 - Two identical loudspeakers 10.0 m apart are driven...Ch. 18 - Prob. 18.14PCh. 18 - Two sinusoidal waves traveling in opposite...Ch. 18 - Verify by direct substitution that the wave...Ch. 18 - Two transverse sinusoidal waves combining in a...Ch. 18 - A standing wave is described by the wave function...Ch. 18 - Two identical loudspeakers are driven in phase by...Ch. 18 - Prob. 18.20PCh. 18 - A string with a mass m = 8.00 g and a length L =...Ch. 18 - The 64.0-cm-long string of a guitar has a...Ch. 18 - The A string on a cello vibrates in its first...Ch. 18 - A taut string has a length of 2.60 m and is fixed...Ch. 18 - A certain vibrating string on a piano has a length...Ch. 18 - A string that is 30.0 cm long and has a mass per...Ch. 18 - In the arrangement shown in Figure P18.27, an...Ch. 18 - In the arrangement shown in Figure P17.14, an...Ch. 18 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 18 - Review. A sphere of mass M is supported by a...Ch. 18 - Prob. 18.31PCh. 18 - Review. A solid copper object hangs at the bottom...Ch. 18 - Prob. 18.33PCh. 18 - The Bay of Fundy, Nova Scotia, has the highest...Ch. 18 - An earthquake can produce a seiche in a lake in...Ch. 18 - High-frequency sound can be used to produce...Ch. 18 - Prob. 18.37PCh. 18 - Prob. 18.38PCh. 18 - Calculate the length of a pipe that has a...Ch. 18 - The overall length of a piccolo is 32.0 cm. The...Ch. 18 - The fundamental frequency of an open organ pipe...Ch. 18 - Prob. 18.42PCh. 18 - An air column in a glass tube is open at one end...Ch. 18 - Prob. 18.44PCh. 18 - Prob. 18.45PCh. 18 - A shower stall has dimensions 86.0 cm 86.0 cm ...Ch. 18 - Prob. 18.47PCh. 18 - Prob. 18.48PCh. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - Two adjacent natural frequencies of an organ pipe...Ch. 18 - Why is the following situation impossible? A...Ch. 18 - A student uses an audio oscillator of adjustable...Ch. 18 - An aluminum rod is clamped one-fourth of the way...Ch. 18 - Prob. 18.55PCh. 18 - Prob. 18.56PCh. 18 - In certain ranges of a piano keyboard, more than...Ch. 18 - Prob. 18.58PCh. 18 - Review. A student holds a tuning fork oscillating...Ch. 18 - An A-major chord consists of the notes called A,...Ch. 18 - Suppose a flutist plays a 523-Hz C note with first...Ch. 18 - A pipe open at both ends has a fundamental...Ch. 18 - Prob. 18.63APCh. 18 - Two strings are vibrating at the same frequency of...Ch. 18 - Prob. 18.65APCh. 18 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 18 - The fret closest to the bridge on a guitar is 21.4...Ch. 18 - Prob. 18.68APCh. 18 - A quartz watch contains a crystal oscillator in...Ch. 18 - Review. For the arrangement shown in Figure...Ch. 18 - Prob. 18.71APCh. 18 - Two speakers are driven by the same oscillator of...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Review. The top end of a yo-yo string is held...Ch. 18 - On a marimba (Fig. P18.75), the wooden bar that...Ch. 18 - A nylon siring has mass 5.50 g and length L = 86.0...Ch. 18 - Two train whistles have identical frequencies of...Ch. 18 - Review. A loudspeaker at the front of a room and...Ch. 18 - Prob. 18.79APCh. 18 - Prob. 18.80APCh. 18 - Prob. 18.81APCh. 18 - A standing wave is set up in a string of variable...Ch. 18 - Two waves are described by the wave functions...Ch. 18 - Prob. 18.84APCh. 18 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 18 - Review. An object of mass m hangs in equilibrium...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Prob. 18.88CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please solvearrow_forwardPlease solvearrow_forwardA piece of silicon semiconductor has length L=0.01cm and cross-section in a square shape with an area of A=5×10−4cm2 . The semiconductor is doped with 1012cm−3 Phosphorus atoms and 1017cm−3 Boron atoms. An external electric field E=1.5×104N/C is applied to the silicon piece along the length direction, through the cross section. What is the total current in the silicon at T=300K? Assume the mobility of silicon is 1400cm2V−1s−1 for electrons and 450cm2V−1s−1 for holes, respectively. Assume the intrinsic carrier concentration in silicon is 1010cm−3 . Give your answer in mA, rounded to 3 significant figures. Just enter the number, nothing else.arrow_forward
- An impurity with a charge of 2e is placed in a three-dimensional metal. Assume that the Friedel sum rule holds for this system, and only the scattering phase shifts from the electrons contribute to this sum (we don't need to consider ion phase shifts). This metal has a spherical Fermi surface with Fermi wave vector kF . The only degeneracy for the electrons at the Fermi surface is spin (two-fold) and angular momentum ( 2l+1 for each angular momentum l ). Ignore scattering for l>2 and assume that the scattering doesn't depend on the spin degree of freedom. Denote the scattering phase shift at the Fermi wave vector in the l -th angular momentum channel as δl(kF) . If δ0(kF)=11π31 , and δ1(kF)=π29 , what is δ2(kF)? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardA pilot with a mass of 75 kg is flying an airplane at a true airspeed of 55m/s in air that is still relative to the ground. The pilot enters a coordinated turn of constant bank angle and constant altitude, and the pilot experiences an effective weight of 1471.5N normal to the wings of the plane. What is the rate of turn (in degrees per second) for the aircraft? Round your answer to three significant figures. Just enter the number, nothing else.arrow_forwardImagine you are out for a stroll on a sunny day when you encounter a lake. Unpolarized light from the sun is reflected off the lake into your eyes. However, you notice when you put on your vertically polarized sunglasses, the light reflected off the lake no longer reaches your eyes. What is the angle between the unpolarized light and the surface of the water, in degrees, measured from the horizontal? You may assume the index of refraction of air is nair=1 and the index of refraction of water is nwater=1.33 . Round your answer to three significant figures. Just enter the number, nothing else.arrow_forward
- Red, yellow, green, and blue light with wavelengths of λred=700 nm , λyellow=580 nm , λgreen=520 nm , and λblue=475 nm are directed at a slit that is 20 μm wide at normal incidence. The light hits a screen 1 m behind the slit. Which color of light will have an interference minimum closest to a point 10 cm away from its central maxima? You may assume the small angle approximation sinθ≈tanθ≈θ for angles smaller than 10∘ . Just enter the wavelength of that color in nm, nothing else.arrow_forwardIn the circuit shown, the switch is initially open and the capacitor isuncharged. What will be the current through R1 the instant after the switch isclosed? Take V=10 V, R1 = 20 W, R2 = 20 W, R3 = 10 W and C = 2 mF.arrow_forwardIn the circuit shown take: V1 = 20V, V2 = 40V, R1 = 5W, R2 = 2W and R3 =10W. If i1 = 2A, what is i3 if the assumed direction of the current is as shown.arrow_forward
- Consider the circuit shown in the figure below. (Let R = 12.0 (2.) 25.0 V 10.0 www 10.0 Ω b www 5.00 Ω w R 5.00 Ω i (a) Find the current in the 12.0-0 resistor. 1.95 × This is the total current through the battery. Does all of this go through R? A (b) Find the potential difference between points a and b. 1.72 × How does the potential difference between points a and b relate to the current through resistor R? Varrow_forward3.90 ... CP A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/h, the rocket is dropped. After the drop, the air- liner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its rocket motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3.00g directed at an angle of 30.0° above the hori- zontal. For reasons of safety, the rocket should be at least 1.00 km in front of the airliner when it climbs through the airliner's alti- tude. Your job is to determine the minimum time that the rocket must fall before its engine starts. You can ignore air resistance. Your answer should include (i) a diagram showing the flight paths of both the rocket and the airliner, labeled at several…arrow_forward1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°. Outside the pipe the temperature is fixed at Tout = 15 °C. If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature of the fluid at the end of the pipe? (Answer: 83 °C) please I need to show All work problems step by steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY