
(a)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(a)

Answer to Problem 18.21QP
The temperature of the given water sample will increase gradually, and water will evaporate in the room. This is a spontaneous process.
Explanation of Solution
To give: The change in the water sample
Given information,
The temperature of the given water sample will increase gradually, and then water sample will evaporate in the room. This is a spontaneous process.
(b)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(b)

Answer to Problem 18.21QP
The sign of enthalpy is positive, since heat is absorbed for evaporation process. The sign of entropy change is positive because water molecules changed their state from liquid to gas.
Explanation of Solution
To give: The enthalpy change of the water sample
Given information,
The sign of enthalpy is positive, since heat is absorbed by the water sample for evaporation process. The sign of entropy is positive because water molecules changed their state from liquid to gas (free movement of molecules).
(c)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(c)

Answer to Problem 18.21QP
The water molecules are easily moving and in higher temperature. Hence, the sign of entropy change is positive. The sign of enthalpy change is already positive, so the only way to have a spontaneous process is when the sign of entropy change is also positive.
Explanation of Solution
To give: The entropy change of the water sample
Given information,
The water molecules are in easily moving state and in higher temperature. Hence, the sign of entropy change is positive.
Given process is a spontaneous process, the sign of enthalpy change is already positive, so the sign of entropy change is should be positive.
(d)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(d)

Answer to Problem 18.21QP
Given process is a spontaneous process. Hence, the sign of free energy change is negative.
Explanation of Solution
To give: The free energy change of the water sample
Given information,
Given process is a spontaneous process, hence, the sign of free energy should be negative.
For a spontaneous process
(e)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(e)

Answer to Problem 18.21QP
The temperature of the given water sample will decrease gradually, and then water will evaporate in the room. This is spontaneous process.
Explanation of Solution
To give: The change in the water sample
Given information,
The temperature of the given water sample will decrease gradually, and then water will evaporate in the room. This is a spontaneous process.
(f)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(f)

Answer to Problem 18.21QP
The sign of enthalpy is negative because heat is released from water sample. The entropy change is positive because water molecules are escaping into the gaseous state.
Explanation of Solution
To give: The enthalpy change of the water sample
Given information,
The sign of enthalpy is negative
The entropy change is positive
(g)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(g)

Answer to Problem 18.21QP
The sign of entropy change is negative because water molecules are at a lower temperature and their movement is slow. But, some water molecules evaporates and becomes vapor state this process will increases the entropy.
Explanation of Solution
To give: The entropy change of the water sample
Given information,
The sign of entropy change is negative because water molecules are at a lower temperature and their movement is slow.
But, some water molecules evaporates and becomes vapor state this process will increases the entropy.
(h)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(h)

Answer to Problem 18.21QP
Given process is a spontaneous process. Hence, the sign of free energy change is negative.
Explanation of Solution
To give: The free energy change of the water sample
Given information,
Given process is a spontaneous process, hence, the sign of free energy should be negative.
For a spontaneous process
(i)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(i)

Answer to Problem 18.21QP
The temperature of the water will not change, and water molecules will evaporate, this is a spontaneous process.
Explanation of Solution
To give: The change in the water sample
Given information,
The temperature of the water will not change, and water molecules will evaporate, this is a spontaneous process.
(j)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(j)

Answer to Problem 18.21QP
The sign of enthalpy is positive because heat is absorbed by water molecules for their evaporation. The sign of entropy change is positive because the phase changes of water molecules from liquid to gas.
Explanation of Solution
To give: The enthalpy change of the water sample
Given information,
The sign of enthalpy change is positive, since heat is absorbed by the water sample for evaporation process.
The sign of entropy change is positive because water molecules changed their state from liquid to gas (free movement of molecules).
(k)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(k)

Answer to Problem 18.21QP
For a spontaneous process the sign of free energy change should be positive, here the sign of enthalpy change is already positive so the sign of entropy change should be positive.
Explanation of Solution
To give: The entropy change of the water sample
Given information,
For a spontaneous process
Given process is a spontaneous process, the sign of enthalpy change is already positive, so the sign of entropy change should be positive.
(l)
Interpretation:
For the given water sample various changes in enthalpy, entropy and free energy with temperature has to be explained.
Concept introduction:
Free energy:
Free energy is measured by subtracting the product of temperature and entropy from the enthalpy of a system.
Relationship between
(l)

Answer to Problem 18.21QP
Given process is a spontaneous process. Hence, the sign of free energy change is negative.
Explanation of Solution
To give: The free energy change of the water sample
Given information,
Given process is a spontaneous process, hence, the sign of free energy change should be negative.
For a spontaneous process
Want to see more full solutions like this?
Chapter 18 Solutions
General Chemistry
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Q4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br 'CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




