PHYSICS 1250 PACKAGE >CI<
9th Edition
ISBN: 9781305000988
Author: SERWAY
Publisher: CENGAGE LEARNING (CUSTOM)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 18, Problem 18.10P
Why is the following situation impossible? Two identical loudspeakers are driven by the same oscillator at frequency 200 Hz. They are located on the ground a distance d = 4.00 m from each other. Starting far from the speakers, a man walks straight toward the right-hand speaker as shown in Figure P17.4. After passing through three minima in sound intensity, he walks to the next maximum and stops. Ignore any sound reflection from the ground.
Figure P17.4
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A whistle you use to call your hunting dog has a frequency of 42 kHz, but your dog is ignoring it. You suspect the whistle may not be working, but you can't hear sounds above 40 kHz. To test it, you ask a friend to blow the whistle, then you hop on your bicycle. At what minimum speed should you ride to know if the whistle is working?
Sound waves travel at roughly 340 m/s at room temperature. The minimum hearing range of a human is 20Hz. a) What is the wavelength of this wave? b) Could this wavelength fit inside the dimensions of Room 411( room dimensions are roughly 11.5 m x 8.7 m)? Justify your answer with sound reasoning
A concert loudspeaker suspended high off the ground emits 35 W of sound power. A small microphone with a 1.0 cm2 area is 50 m from the speaker. What are (a) the sound intensity and (b) the sound intensity level at the position of the microphone?
Chapter 18 Solutions
PHYSICS 1250 PACKAGE >CI<
Ch. 18 - Prob. 18.1QQCh. 18 - Consider the waves in Figure 17.8 to be waves on a...Ch. 18 - When a standing wave is set up on a string fixed...Ch. 18 - Prob. 18.4QQCh. 18 - Balboa Park in San Diego has an outdoor organ....Ch. 18 - In figure OQ18.1 (page 566), a sound wave of...Ch. 18 - A string of length L, mass pet unit length , and...Ch. 18 - In Example 18.1, we investigated an oscillator at...Ch. 18 - Prob. 18.4OQCh. 18 - A flute has a length of 58.0 cm. If the speed of...
Ch. 18 - When two tuning forks are sounded at the same...Ch. 18 - A tuning fork is known to vibrate with frequency...Ch. 18 - An archer shoots an arrow horizontally from the...Ch. 18 - As oppositely moving pulses of the same shape (one...Ch. 18 - Prob. 18.10OQCh. 18 - Suppose all six equal-length strings of an...Ch. 18 - Assume two identical sinusoidal waves are moving...Ch. 18 - Prob. 18.1CQCh. 18 - When two waves interfere constructively or...Ch. 18 - Prob. 18.3CQCh. 18 - What limits the amplitude of motion of a real...Ch. 18 - Prob. 18.5CQCh. 18 - An airplane mechanic notices that the sound from a...Ch. 18 - Despite a reasonably steady hand, a person often...Ch. 18 - Prob. 18.8CQCh. 18 - Does the phenomenon of wave interference apply...Ch. 18 - Two waves are traveling in the same direction...Ch. 18 - Two wave pulses A and B are moving in opposite...Ch. 18 - Two waves on one string are described by the wave...Ch. 18 - Two pulses of different amplitudes approach each...Ch. 18 - A tuning fork generates sound waves with a...Ch. 18 - The acoustical system shown in Figure OQ18.1 is...Ch. 18 - Two pulses traveling on the same string are...Ch. 18 - Two identical loudspeakers are placed on a wall...Ch. 18 - Two traveling sinusoidal waves are described by...Ch. 18 - Why is the following situation impossible? Two...Ch. 18 - Two sinusoidal waves on a string are defined by...Ch. 18 - Two identical sinusoidal waves with wavelengths of...Ch. 18 - Two identical loudspeakers 10.0 m apart are driven...Ch. 18 - Prob. 18.14PCh. 18 - Two sinusoidal waves traveling in opposite...Ch. 18 - Verify by direct substitution that the wave...Ch. 18 - Two transverse sinusoidal waves combining in a...Ch. 18 - A standing wave is described by the wave function...Ch. 18 - Two identical loudspeakers are driven in phase by...Ch. 18 - Prob. 18.20PCh. 18 - A string with a mass m = 8.00 g and a length L =...Ch. 18 - The 64.0-cm-long string of a guitar has a...Ch. 18 - The A string on a cello vibrates in its first...Ch. 18 - A taut string has a length of 2.60 m and is fixed...Ch. 18 - A certain vibrating string on a piano has a length...Ch. 18 - A string that is 30.0 cm long and has a mass per...Ch. 18 - In the arrangement shown in Figure P18.27, an...Ch. 18 - In the arrangement shown in Figure P17.14, an...Ch. 18 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 18 - Review. A sphere of mass M is supported by a...Ch. 18 - Prob. 18.31PCh. 18 - Review. A solid copper object hangs at the bottom...Ch. 18 - Prob. 18.33PCh. 18 - The Bay of Fundy, Nova Scotia, has the highest...Ch. 18 - An earthquake can produce a seiche in a lake in...Ch. 18 - High-frequency sound can be used to produce...Ch. 18 - Prob. 18.37PCh. 18 - Prob. 18.38PCh. 18 - Calculate the length of a pipe that has a...Ch. 18 - The overall length of a piccolo is 32.0 cm. The...Ch. 18 - The fundamental frequency of an open organ pipe...Ch. 18 - Prob. 18.42PCh. 18 - An air column in a glass tube is open at one end...Ch. 18 - Prob. 18.44PCh. 18 - Prob. 18.45PCh. 18 - A shower stall has dimensions 86.0 cm 86.0 cm ...Ch. 18 - Prob. 18.47PCh. 18 - Prob. 18.48PCh. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - As shown in Figure P17.27, water is pumped into a...Ch. 18 - Two adjacent natural frequencies of an organ pipe...Ch. 18 - Why is the following situation impossible? A...Ch. 18 - A student uses an audio oscillator of adjustable...Ch. 18 - An aluminum rod is clamped one-fourth of the way...Ch. 18 - Prob. 18.55PCh. 18 - Prob. 18.56PCh. 18 - In certain ranges of a piano keyboard, more than...Ch. 18 - Prob. 18.58PCh. 18 - Review. A student holds a tuning fork oscillating...Ch. 18 - An A-major chord consists of the notes called A,...Ch. 18 - Suppose a flutist plays a 523-Hz C note with first...Ch. 18 - A pipe open at both ends has a fundamental...Ch. 18 - Prob. 18.63APCh. 18 - Two strings are vibrating at the same frequency of...Ch. 18 - Prob. 18.65APCh. 18 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 18 - The fret closest to the bridge on a guitar is 21.4...Ch. 18 - Prob. 18.68APCh. 18 - A quartz watch contains a crystal oscillator in...Ch. 18 - Review. For the arrangement shown in Figure...Ch. 18 - Prob. 18.71APCh. 18 - Two speakers are driven by the same oscillator of...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Review. The top end of a yo-yo string is held...Ch. 18 - On a marimba (Fig. P18.75), the wooden bar that...Ch. 18 - A nylon siring has mass 5.50 g and length L = 86.0...Ch. 18 - Two train whistles have identical frequencies of...Ch. 18 - Review. A loudspeaker at the front of a room and...Ch. 18 - Prob. 18.79APCh. 18 - Prob. 18.80APCh. 18 - Prob. 18.81APCh. 18 - A standing wave is set up in a string of variable...Ch. 18 - Two waves are described by the wave functions...Ch. 18 - Prob. 18.84APCh. 18 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 18 - Review. An object of mass m hangs in equilibrium...Ch. 18 - Review. Consider the apparatus shown in Figure...Ch. 18 - Prob. 18.88CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A careless child accidentally drops a tuning fork vibrating at 450 Hz from a window of a high-rise building. How far below the window is the tuning fork when the child hears sound waves with frequency 425 Hz? Remember to account for the time required for the sound to reach the child.arrow_forwardA siren emits a sound of frequency 1.44103 Hz when it is stationary with respect to an observer. The siren is moving away from a person and toward a cliff at a speed of 15 m/s. Both the cliff and the observer are at rest. Assume the speed of sound in air is 343 m/s. What is the frequency of the sound that the person will hear a. coming directly from the siren and b. reflected from the cliff?arrow_forwardA tuning fork is known to vibrate with frequency 262 Hz. When it is sounded along with a mandolin siring, four beats are heard every second. Next, a bit of tape is put onto each line of the tuning fork, and the tuning fork now produces five beats per second with the same mandolin siring. What is the frequency of the string? (a) 257 Hz (b) 258 Hz (c) 262 Hz (d) 266 Hz (e) 267 Hzarrow_forward
- A block of mass m = 5.00 kg is suspended from a wire that passes over a pulley and is attached to a wall (Fig. P17.71). Traveling waves are observed to have a speed of 33.0 m/s on the wire. a. What is the mass per unit length of the wire? b. What would the speed of waves on the wire be if the suspended mass were decreased to 2.50 kg? FIGURE P17.71arrow_forwardAs in Figure P18.16, a simple harmonic oscillator is attached to a rope of linear mass density 5.4 102 kg/m, creating a standing transverse wave. There is a 3.6-kg block hanging from the other end of the rope over a pulley. The oscillator has an angular frequency of 43.2 rad/s and an amplitude of 24.6 cm. a. What is the distance between adjacent nodes? b. If the angular frequency of the oscillator doubles, what happens to the distance between adjacent nodes? c. If the mass of the block is doubled instead, what happens to the distance between adjacent nodes? d. If the amplitude of the oscillator is doubled, what happens to the distance between adjacent nodes? FIGURE P18.16arrow_forward(a) What is the speed of sound in a medium where a 100-kHz frequency produces a 5.96-cm wavelength? (b) Which substance in Table 17.1 is this likely to be?arrow_forward
- A vibrating tuning fork is held above a glass cylinder filled to the top with water. The water level is steadily lowered. A loud sound is first heard when the water level is 83.5 cm above the bench.The next loud sound is heard when the water level is 17.1 cm above the bench.The speed of sound in air is 340 m s–1.What is the frequency of the tuning fork?A 128 Hz B 256 Hz C 384 Hz D 512 Hzarrow_forwardA 49.4-Hz sound wave is barely audible at a sound intensity level of 60.0 dB. The density of air at 20.0°C is 1.20 kg/m3. Speed of sound in air at 20.0°C is 343 m/s. What is the displacement amplitude of a 49.4-Hz sound wave? Answer in ____ n/m.arrow_forwardSound is detected when a sound wave causes the eardrum to vibrate. Typically, the diameter of a human eardrum is around 8.4 mm. How much energy is delivered to your eardrum when someone whispers (20 dB) right next to your ear for 3.5 s?arrow_forward
- A mother hawk screeches as she dives at you. You recall from biology that female hawks screech at 792 HzHz, but you hear the screech at 883 HzHz. How fast is the hawk approaching?arrow_forwardYou're using an ultrasonic sensor in the deep depths of the ocean to identify shipwrecks. However, you first need to calibrate your sensor for these conditions, as the speed of sound is unknown in the cold, high pressure conditions you are working in. You set up an experiment in a lab where you recreate the environmental conditions of the deep ocean and place an object 30 m from an ultrasonic sensor. The total travel time of the ultrasonic wave is 33 ms (milliseconds). What is the speed of sound in these conditions?arrow_forwardYou are standing 2.50 m directly in front of one of the two loudspeakers as shown. They are 3.00 m apart and both are playing a 686 Hz tone in phase. As you begin to walk directly away from the speaker, at what distances from the speaker do you hear a minimum sound intensity? The room temperature is 20°C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY