The initial trial asphalt content for different blends.
Answer to Problem 16P
Explanation of Solution
Given information:
Nominal maximum sieve of each aggregate blend = 19 mm.
Calculation:
For trial blend 1, we have:
The amount of asphalt binder absorbed by the aggregates is estimated
from Eq. 18.18 as
Where,
Substitute the values in the required equation, we have
Estimate the percent of effective asphalt binder by volume using theempirical expression given as follows:
Where,
gradation (mm).
Substitute the values in the required equation, we have
Now, calculate the mass of aggregate by using the following formula:
Where,
Substitute the values, we have
A trial percentage of asphalt binder then is determined for each trial
aggregate blend using the following equation.
Where,
Substitute the values, we have
For trial blend 2, we have:
The amount of asphalt binder absorbed by the aggregates is estimated
from Eq. 18.18 as
Where,
Substitute the values in the required equation, we have
Estimate the percent of effective asphalt binder by volume using the empirical expression given as follows:
Where,
gradation (mm).
Substitute the values in the required equation, we have
Now, calculate the mass of aggregate by using the following formula:
Where,
Substitute the values, we have
A trial percentage of asphalt binder then is determined for each trial
aggregate blend using the following equation.
Where,
Substitute the values, we have
For trial blend 3, we have:
The amount of asphalt binder absorbed by the aggregates is estimated
from Eq. 18.18 as
Where,
Substitute the values in the required equation, we have
Estimate the percent of effective asphalt binder by volume using the empirical expression given as follows:
Where,
gradation (mm).
Substitute the values in the required equation, we have
Now, calculate the mass of aggregate by using the following formula:
Where,
Substitute the values, we have
A trial percentage of asphalt binder then is determined for each trial
aggregate blend using the following equation.
Where,
Substitute the values, we have
Conclusion:
Therefore, the initial trial asphalt content for1st, 2nd and 3rd blends is as follows
Want to see more full solutions like this?
Chapter 18 Solutions
Traffic and Highway Engineering - With Mindtap
- P.3.4 A mercury U-tube manometer is used to measure the pressure drop across an orifice in pipe. If the liquid that flowing through the orifice is brine of sp.gr. 1.26 and upstream pressure is 2 psig and the downstream pressure is (10 in Hg) vacuum, find the reading of manometer. Ans. R=394 mm Hgarrow_forwardProject management questionarrow_forwardQ5/B with Explantion plsarrow_forward
- project management question Q5/Barrow_forwardProblem 1: Given: In a given floor system, a 5-in concrete slab supported by T-beams of 24-ft spans, supporting 354 psf live load. The T-beams are spaced 2x4 ft on center, and bw (width of the beam web) = 15 inches. Total T-beam height is 25 inches. f'c = 4,000psi, fy = 60,000psi. Design the T-beam. Show all steps. Sketch your Design. Problem 2: Given: A 25"x25" column is subject to a factored axial load of Pu=1,200 kips, and factored design moment of Mu-354 kips-ft. f'c 4,000psi, fy = 60,000psi. Determine the required steel ratio (p) and ties. Sketch the design. 2.0 0.08 INTERACTION DIAGRAM R4-60.9 fc-4 ksi 1.8 1,- 60 ksi 0.07 Y=0.9 16 1.6 0.06 Kmax 0.05 1.4 f/f, = 0 0.04 00 K₁ = P₁/f'c Ag 1.2 12 0.03 0.25 1.0 10 0.02 0.01 0.8 0.6 0.4 €,= 0.0035 0.2 €,= 0.0050 0.0 h yh 0.50 0.75 1.0. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 R₁ = P₁e/f'Agharrow_forwardGiven: In a given floor system, a 5-in concrete slab supported by T-beams of 24-ft spans, supporting 354 psf live load. The T-beams are spaced 2x4 ft on center, and bw (width of the beam web) = 15 inches. Total T-beam height is 25 inches. f'c = 4,000psi, fy = 60,000psi. Design the T-beam. Show all steps. Sketch your Design.arrow_forward
- Problem 2: Given: A 25"x25" column is subject to a factored axial load of Pu=1,200 kips, and factored design moment of Mu-354 kips-ft. f'c 4,000psi, fy = 60,000psi. Determine the required steel ratio (p) and ties. Sketch the design. 2.0 P=0.08 INTERACTION DIAGRAM R4-60.9 fc-4 ksi 1.8 1,- 60 ksi 0.07 7=0.9 1.6 16 0.06 Kmax 0.05 1.4 f/f, = 0 0.04 90 K₁ = P₁/f'Ag 1.2 0.03 0.25 0.02 1.0 0.01 0.8 0.6 0.4 €= 0.0035 0.2 €,= 0.0050 0.0 h yh 0.50 0.75 1.0. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 R₁ = P₁e/f'Aharrow_forwardGiven: A 25"x25" column is subject to a factored axial load of Pu=1,200 kips, and factored design moment of Mu=354 kips-ft. f'c 4,000psi, fy = 60,000psi. Determine the required steel ratio () and ties. Sketch the design.arrow_forwardSee Figure (1) below. A 14 in. wide and 2 in. thick plate subject to tensile loading has staggered holes as shown. Compute An and Ae. P 2.00 3.00 4.00 3.00 2.00 ΕΙ T A B C F G D S = 2.50 3/4" bolts in 13/16" holes 14x12 PL Parrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning