Concept explainers
Figure 18.11 shows the light curve of a hypothetical eclipsing binary star in which the light of one star is completely blocked by another. What would the light curve look like for a system in which the light of the smaller star is only partially blocked by the larger one? Assume the smaller star is the hotter one. Sketch the relative positions of the two stars that correspond to various portions of the light curve.
Figure 18.11 Light Curve of an Edge-On Eclipsing Binary. Here we see the light curve of a hypothetical eclipsing binary star whose orbit we view exactly edge-on, in which the two stars fully eclipse each other. From the time intervals between contacts, it is possible to estimate the diameters of the two stars.
Trending nowThis is a popular solution!
Chapter 18 Solutions
Astronomy
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Introductory Chemistry (6th Edition)
Campbell Biology (11th Edition)
Chemistry & Chemical Reactivity
Biology: Life on Earth (11th Edition)
- The best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardLet’s say you’re looking for extrasolar planets. You observe a star that has a spectral shift in the line that is supposed to be at at 656.28011 nm – this star shows this line at 656.28005 nm. What is the radial velocity of star (in m/s) and in what direction in relation to you? a) 27.4 m/s, towards b) 27.4 km/s, away c) -27.4 m/s, toward d) -27.4 km/s, awayarrow_forwardTwo stars are identified on the Hertzsprung-Russell diagram below. Hertzsprung-Russell Diagram Temperature (K) 40,000 20,00010,000 7,500 5,500 4,500 3,000 10 10 10 www 10 10 B. G K M Spectral Class Based on this diagram, how do the characteristics of Star 1 and Star 2 compare? Star 1 is cooler and less bright than Star 2. O Star 1 is hotter and brighter than Star 2. O Star 1 is cooler and brighter than Star 2. O Star 1 is hotter and less bright than Star 2. O Aisoujunarrow_forward
- The figure above shows a track on the H-R diagram corresponding to the evolution of a star like the one you’ve just considered. Six stages are numbered. Six stages of stellar evolution are listed below – for each stage, write the number corresponding to its position on the diagram (four of these stages are the same stages you considered in the first part of this tutorial). Horizontal branch: Asymptotic giant branch: White dwarf: Main sequence: Planetary nebula: Red giant branch: What is the approximate mass of this star, in solar masses? Explain how you can tell.arrow_forwardWhich of the following is least reasonable regarding the mass of stars? Group of answer choices The vast majority of stars fall into the range of 0.08 to 100 solar mass. Stars which are too small cannot sustain nuclear fusion. Stars which are excessively big are too sluggish to sustain nuclear fusion. There are more stars on the low end than on the high end of the mass spectrum. A brown dwarf has a mass just below the least massive star.arrow_forwardWhich of the following is least reasonable regarding stars on a Hertzsprung-Russell diagram? 1)Stars with the largest radii are found in the upper right of the diagram. 2) Red giants are found in the upper right of the diagram. 3)White dwarfs are found in the lower left of the diagram. 4) On the main sequence, the mass of stars generally increases to the right.arrow_forward
- The difference in absolute magnitude between two objects is related to their fluxes by the flux-magnitude relation: FA / FB = 2.51(MB - MA) A distant galaxy contains a supernova with an absolute magnitude of -19. If this supernova were placed next to our Sun (M = +4.8) and you observed both of them from the same distance, how much more flux would the supernova emit than the Sun? Fsupernova / FSun = ?arrow_forwardDraw an H-R diagram and dot the following question options on the diagram (using the letters given for the question options). A) The coldest and smallest radius star B) The hottest and largest radius star C) The Sun D) A star in the helium flash phase E) A main sequence star with a temperature of 10000Karrow_forwardStar A and Star B are a bound binary at a distance of 20 pc from the Earth. Their separation is 30 AU. Star A has a mass twice that of Star B. The orbital period of the binary is 100 years. Assume the stars orbit in circular orbits. a. What is the parallax of Star A, in units of arcsec? Assume parallax is measured from the Earth. For part a, ignore the presence of the binary companion. b. What is the angular separation we would observe between Star A and Star B, in units of arcsec? If we compare multiple images of this star system taken across different months and years, which source of motion will be the dominant effect? What is the total mass of the binary system (combined mass of Star A and Star B)? Provide your answer in both kg and solar masses. c. d. What is the distance from Star A to the center of mass of the binary system?arrow_forward
- Tutorial Two stars have the same apparent magnitude, my = 14, but Star A has a parallax of 0.060 arc seconds and Star B has a parallax of 0.040 arc seconds. Which star is farther from Earth? What are their distances (in pc)? What are their absolute magnitudes? Which star is more massive? Part 1 of 4 Which star is farther from Earth? Using the parallax equation we see that the distance is inversely related to the parallax by: 1 Parc seconds d pc Which star has the smaller parallax? O Star A O Star Barrow_forwardPhysics written by hand.arrow_forwardIn a binary star system, the average separation between the stars is 5 AU and their orbital period is 4 years. What is the sum of their masses? (Enter your answer in terms of the mass of the Sun.) 781 Msun The average distance of Star A from the center of mass is 5 times that of Star B. What are their individual masses? (Enter your answers in terms of the mass of the Sun.) Star A How are the distances of each star from the center of mass related to their masses? Meun Star B Be sure you are entering the mass of Star B here. Mearrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning