DELMAR'S STANDARD TEXT OF ELECTRICITY
6th Edition
ISBN: 9780357323380
Author: Herman
Publisher: CENGAGE C
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 14PP
An R-L series circuit contains two resistors and two inductors. The resistors dissipate powers of 96 watts and 125 watts. The inductors have reactive powers of 100 VARs and 78 VARs. What is the power factor?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Home Work
Calculate I, and I2 in the two-port of Fig. below
20
211=602
2/30° V
V₁
%12=-142
721=-j4 2
Z22=82
+
V₂
94
HW-2: Consider the loop of Figure below. If B = 0.5az Wb/m2, R = 20 2,
e = 10 cm, and the rod is moving with a constant velocity of 8ax m/s, find
(a) The induced emf in the rod (b) The current through the resistor
y
I
00
121
&
B (in)
60
Answer: (a) 0.4 V, (b) 20 mA
&
Write a Verilog program to design the 4-bit ripple carry counter using the
instantiation process available in Verilog HDL and write the stimulus
program to check the functionality of the design. Assume 4-bit ripple carry
counter is designed from a T-flipflop and T-flipflop is designed from a D-
flipflop.
Chapter 18 Solutions
DELMAR'S STANDARD TEXT OF ELECTRICITY
Ch. 18 - 1. What is the relationship of voltage and current...Ch. 18 - What is the relationship of voltage and current...Ch. 18 - 3. What is power factor?
Ch. 18 - 4. A circuit contains a 20- resistor and an...Ch. 18 - 5. An R-L series circuit has a power factor of...Ch. 18 - 6. An R-L series circuit has an apparent power of...Ch. 18 - 7. The resistor in an R-L series circuit has a...Ch. 18 - 8. An R-L series circuit has a reactive power of...Ch. 18 - 9. An R-L series circuit contains a resistor and...Ch. 18 - 10. What is the voltage drop across the resistor...
Ch. 18 - 11. A phase angle meter connected in an R-L series...Ch. 18 - 12. An R-L series circuit has a power factor of...Ch. 18 - An AC electric motor is connected to a 240-V,...Ch. 18 - You are a journeyman electrician working in an...Ch. 18 - Prob. 1PPCh. 18 - Assume that the voltage drop across the resistor,...Ch. 18 - Prob. 3PPCh. 18 - Prob. 4PPCh. 18 - In an R-L series circuit,...Ch. 18 - In an R-L series circuit,...Ch. 18 - In an R-L series circuit,...Ch. 18 - In an R-L series circuit, the apparent power is...Ch. 18 - 9. An R-L series circuit is connected to a 60-Hz,...Ch. 18 - In an R-L series circuit, Z=88,R=32.FindXL.Ch. 18 - In an R-L series circuit, apparent power = 450 VA,...Ch. 18 - In an R-L series circuit, =22, true power = 94...Ch. 18 - An R-L series circuit contains two resistors and...Ch. 18 - An R-L series circuit contains two resistors and...Ch. 18 - An R-L series circuit contains two resistors and...Ch. 18 - An R-L series circuit contains two resistors and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- HW3: A 9.375-GHz uniform plane wave is propagating in polyethylene (&-2.26). If the amplitude of the electric field intensity is 500 V/m and the material is assumed to be lossless, find: (a) the phase constant; (b) thearrow_forwardHW1: The location of the sliding bar in Figure below is given by x = 5t + 2t³, and the separation of the two rails is 20 cm. Let B = 0.8x2a, T. Find the voltmeter reading at (a) t = 0.4 s; (b) x = 0.6 m.arrow_forwardFor the circuit shown in Fig. 2.18, he =1.1 K2, hfe =50. Find Avf, Rif and Rof. { Ans: -3.2; 1935; X2807. Ans:-3-2;193;728. Vcc Rs=10kQ RF = 40kQ Re=4KQ -ov Vsarrow_forward
- For the system shown in figure below, the per unit values of different quantities are E-1.2, V 1, X X2-0.4. Xa-0.2 Determine whether the system is stable for a sustained fault. The fault is cleared at 8-60°. Is the system stable? If so find the maximum rotor swing. Find the critical clearing angle. E25 G X'd 08 CB X2 F CB V28 Infinite busarrow_forward17 For the circuit shown in Fig. 2.20, the transistors are identical and have the following parameters: hfe = 50, hie 1.1K, hre = 0, and hoe = 0. Calculate Auf, Rif and Rof. 25 V {Ans #45.4; 112 KM; 129 150k 47k www www +11 www 10k 6 4.7k 50μF Rif R₂1000 w 4.7k 47k Vo Q2 33k 4.7k ww 50µF 5μF 4.7k 1 R₁ Rofarrow_forwardFor the circuit shown in Fig. 2.18, he =1.1 K2, hfe =50. Find Avf, Rif and Rof. { Ans: -3.2; 1935; X2807. Ans:-3-2;193;728. Vcc Rs=10kQ RF = 40kQ Re=4KQ -ov Vs Fig. 2.18 Circuit for Q5.arrow_forward
- The circuit of Fig. 2.16 is to have Af=-1mA/V, D=1+ BA = 50, a voltage gain of -4, Rs =1KQ, and hfe = 150. Find RL, Re, Rif and Rof.. Vcc www RL OV Ans: 4 kor; 98053150 KS;∞. { An Re Fig. 2.16 Circuit for Q3.arrow_forwardDuring the lab you will design and measure a differential amplifier, made with an opamp. inside generator R5 ww 500 V1 0.1Vpk 1kHz 0° R6 w 50Ω R1 ww 10ΚΩ VCC C1 balanced wire R3 w 15.0V signal+ 100nF U1A TL082CP ground 2 signal- R4 w C2 Question5: Calculate R3 and R4 for a 20dB. 100nF VEE -15.0V R2 ww 10ΚΩarrow_forwardnot use ai pleasearrow_forward
- 3. Consider the system described by the transfer function Gp(s) polynomial controller to satisfy the below specifications: 1) The settling time is t = 1 second, 2) 0.1% peak overshoot, 3) and zero steady-state error for a ramp input. The sampling period is T = 0.01 second. 1 = Design a discrete-time s(s+5)*arrow_forwardProblem 2 Does there exist a value a that makes the two systems S₁ and S₂ equal? If so, what is this value ? If not, explain why. S₁ x[n] x[n] D D -2 → host 回洄 S with h[m] " 999. усиз -1012345 harrow_forwardplease not use any aiarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Inductors Explained - The basics how inductors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=KSylo01n5FY;License: Standard Youtube License