Two different equations showing the change in Gibbs free energy are given. The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated. Concept introduction: Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as, W max = Δ G ° The relationship between Gibbs free energy change and cell potential is given by the formula, Δ G ° = − n F E ° cell The relation between Δ G ° , Δ H ° and Δ S ° is given as, Δ G ° = Δ H ° − T Δ S ° To determine: The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature. The relation obtained from the given equations is, E ° cell = T ( Δ S ° n F ) + ( − Δ H ° n F )
Two different equations showing the change in Gibbs free energy are given. The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated. Concept introduction: Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as, W max = Δ G ° The relationship between Gibbs free energy change and cell potential is given by the formula, Δ G ° = − n F E ° cell The relation between Δ G ° , Δ H ° and Δ S ° is given as, Δ G ° = Δ H ° − T Δ S ° To determine: The derivation of E ° as a function of temperature for the given equations, the graphical determination of Δ H ° and Δ S ° from measurements of E ° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature. The relation obtained from the given equations is, E ° cell = T ( Δ S ° n F ) + ( − Δ H ° n F )
Two different equations showing the change in Gibbs free energy are given. The derivation of
E° as a function of temperature for the given equations, the graphical determination of
ΔH° and
ΔS° from measurements of
E° at different temperature and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature is to be stated.
Concept introduction:
Gibbs free energy is basically the maximum amount of non-expansion work done. Therefore, it is represented as,
Wmax=ΔG°
The relationship between Gibbs free energy change and cell potential is given by the formula,
ΔG°=−nFE°cell
The relation between
ΔG°,
ΔH° and
ΔS° is given as,
ΔG°=ΔH°−TΔS°
To determine: The derivation of
E° as a function of temperature for the given equations, the graphical determination of
ΔH° and
ΔS° from measurements of
E° at different temperatures and the property used for designing a reference half-cell that would produce a potential relatively stable with respect to temperature.
The relation obtained from the given equations is,
find K, the equilibrium constant, if the inital concentration of SO3 is 0.166 M, and the equilibrium concentration of O2 is 0.075 M.
2SO3 (g) ⇌ 2SO2 (g) + O2 (g)
Q4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution,
respectively.
F CI
Br |
Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to
have a reasonable yield of product.
NH2
Br
Br
Br
OH
Br
Q7: Rank the following groups in order of basicity, nucleophilicity, and leaving group ability.
a) H₂O, OH, CH3COOT
b) NH3, H₂O, H₂S
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.