The reactions that take place at the cathode and the anode when molten NiBr 2 , AlF 3 and MnI 2 are electrolyzed. Concept introduction: The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions. To determine: The reactions that take place at the cathode and the anode when molten NiBr 2 is electrolyzed. The reaction taking place at cathode is, Ni 2 + + 2 e − → Ni The reaction taking place at anode is, 2 Br − → Br 2 + 2 e −
The reactions that take place at the cathode and the anode when molten NiBr 2 , AlF 3 and MnI 2 are electrolyzed. Concept introduction: The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions. To determine: The reactions that take place at the cathode and the anode when molten NiBr 2 is electrolyzed. The reaction taking place at cathode is, Ni 2 + + 2 e − → Ni The reaction taking place at anode is, 2 Br − → Br 2 + 2 e −
Solution Summary: The author describes the electrolysis of molten NiBr_2 in an electrolytic cell.
Definition Definition Process of breaking down ionic compounds into their constituent elements by passing a direct electric current through the compound in a fluid state.
Chapter 18, Problem 109E
(a)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
NiBr2,
AlF3 and
MnI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
NiBr2 is electrolyzed.
The reaction taking place at cathode is,
Ni2++2e−→Ni
The reaction taking place at anode is,
2Br−→Br2+2e−
(b)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
NiBr2,
AlF3 and
MnI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
AlF3 is electrolyzed.
The reaction taking place at cathode is,
Al3++3e−→Al
The reaction taking place at anode is,
2F−→F2+2e−
(c)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
NiBr2,
AlF3 and
MnI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
NiBr2 is electrolyzed.
(12) Which one of the following statements about fluo-
rometry is FALSE?
a) Fluorescence is better detected at 90 from the exci-
tation direction.
b) Fluorescence is typically shifted to longer wave-
length from the excitation wavelength.
c) For most fluorescent compounds, radiation is pro-
duced by a
transition
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell