The reactions that take place at the cathode and the anode when molten KF , CuCl 2 and MgI 2 are electrolyzed. Concept introduction: The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions. To determine: The reactions that take place at the cathode and the anode when molten KF is electrolyzed. The reaction taking place at cathode is, K + + e − → K The reaction taking place at anode is, F − → 1 2 F 2 +e −
The reactions that take place at the cathode and the anode when molten KF , CuCl 2 and MgI 2 are electrolyzed. Concept introduction: The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions. To determine: The reactions that take place at the cathode and the anode when molten KF is electrolyzed. The reaction taking place at cathode is, K + + e − → K The reaction taking place at anode is, F − → 1 2 F 2 +e −
Definition Definition Process of breaking down ionic compounds into their constituent elements by passing a direct electric current through the compound in a fluid state.
Chapter 18, Problem 110E
(a)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
KF,
CuCl2 and
MgI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
KF is electrolyzed.
The reaction taking place at cathode is,
K++e−→K
The reaction taking place at anode is,
F−→12F2+e−
(b)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
KF,
CuCl2 and
MgI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
CuCl2 is electrolyzed.
The reaction taking place at cathode is,
Cu2++2e−→Cu
The reaction taking place at anode is,
2Cl−→Cl2+2e−
(c)
Interpretation Introduction
Interpretation:
The reactions that take place at the cathode and the anode when molten
KF,
CuCl2 and
MgI2 are electrolyzed.
Concept introduction:
The non-spontaneous reaction takes place in an electrolytic cell in which there occurs conversion of electrical energy into chemical energy and this is used for the electrolysis of a metal. The electrolytic cell involves a cathode and an anode, both dipped into an electrolytic solution having both the positive and negative ions.
To determine: The reactions that take place at the cathode and the anode when molten
MgI2 is electrolyzed.
. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the
molecule depicted below.
Bond B
2°C. +2°C. < cleavage
Bond A
• CH3 + 26. t cleavage
2°C• +3°C•
Bond C
Cleavage
CH3 ZC
'2°C. 26.
E
Strongest
3°C. 2C.
Gund
Largest
BDE
weakest bond
In that molecule
a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in
appropriate boxes.
Weakest
C bond
Produces
A
Weakest
Bond
Most
Strongest
Bond
Stable radical
Strongest Gund
produces least stable
radicals
b. (4pts) Consider the relative stability of all cleavage products that form when bonds A,
B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B,
and C are all carbon radicals.
i. Which ONE cleavage product is the most stable? A condensed or bond line
representation is fine.
人
8°C. formed in
bound C
cleavage
ii. Which ONE cleavage product is the least stable? A condensed or bond line
representation is fine.
methyl radical
•CH3
formed in
bund A Cleavage
Which carbocation is more stable?
Are the products of the given reaction correct? Why or why not?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell