(a)
Interpretation:
The validation corresponding to the fact that aspartame is chiral is to be stated. If aspartame is chiral, then the possible number of stereoisomers for aspartame is to be stated.
Concept Introduction:
A compound that contains a chiral carbon is known as chiral compound. Carbon atom that contains all the four different atoms or group of atoms attached to it is referred as the chiral atom. This carbon is also known as stereocenter.
The possible number of stereoisomers is calculated by the expression

Answer to Problem 10P
Aspartame is a chiral compound. The possible number of stereoisomers for aspartame is
Explanation of Solution
The aspartame is a chiral compound. The structure of aspartame which contains chiral carbon atoms is shown as,
There are two chiral carbon atoms present in aspartame which are marked with asterisk sign. In the structure of aspartame, one carbon atom is directly bonded to
Thus, the possible number of stereoisomers in aspartame is,
Where,
- is the number of stereocenter.
Thus, the possible stereoisomers of aspartame is
(b)
Interpretation:
The name of each functional group present in aspartame is to be stated.
Concept Introduction:
An atom or a group of atoms that shows characteristic physical and chemical properties are collectively known as

Answer to Problem 10P
The name of each functional group present in aspartame is ester group
Explanation of Solution
According to the structure of aspartame shown in Figure 1, there are four functional groups present in the structure of aspartame.
The name of all the functional group of aspartame is ester group
(c)
Interpretation:
The net charge on aspartame molecule in an aqueous solution at
Concept Introduction:
The negative logarithm of hydrogen ion concentration of the solution is known as

Answer to Problem 10P
The net charge on aspartame molecule in an aqueous solution at
Explanation of Solution
In an aqueous solution of
Hence, there is no change of charge takes place in aspartame and it possesses zero net charge.
(d)
Interpretation:
The validation corresponding to the fact that aspartame is whether soluble in water or not is to be stated.
Concept Introduction:
According to the concept of solubility, it is mentioned that like dissolves like. Generally, polar compound can only be dissolved in polar solvents and non-polar or weakly polar compounds can only be dissolved in non-polar solvents or weakly polar solvents.

Answer to Problem 10P
Aspartame is soluble in water.
Explanation of Solution
The given structure of asparatame is present in zwitterion form which suggests that it is a polar molecule. According to the concept of like dissolves like, aspartame is soluble in water because water is also a polar molecule.
(e)
Interpretation:
The structural formulas for the products that are obtained by the complete hydrolysis of aspartame in aqueous
Concept Introduction:
An atom or a group of atoms that shows characteristic physical and chemical properties are collectively known as functional groups. The functional group is the most reactive part present in the molecule. The main functional groups are
The addition of water molecule to the compound is known as hydrolysis that compound.

Answer to Problem 10P
The structural formulas for the products that are obtained by the complete hydrolysis of aspartame in aqueous
Explanation of Solution
The hydrolysis of aspartame in the presence of aqueous
Figure 2.
The reaction of aspartame with aqueous
(f)
Interpretation:
The structural formulas for the products that are obtained by the complete hydrolysis of aspartame in aqueous
Concept Introduction:
An atom or a group of atoms that shows characteristic physical and chemical properties are collectively known as functional groups. The functional group is the most reactive part present in the molecule. The main functional groups are
The addition of water molecule to the compound is known as hydrolysis that compound.

Answer to Problem 10P
The structural formulas for the products that are obtained by the complete hydrolysis of aspartame in aqueous
Explanation of Solution
The hydrolysis of aspartame in the presence of aqueous
Figure 3.
The reaction of aspartame with aqueous
Want to see more full solutions like this?
Chapter 18 Solutions
EP INTRO.TO GENERAL,ORGANIC...-OWL ACCE
- dont provide AI solution .... otherwise i will give you dislikearrow_forwardName these organic compounds: structure name CH3 CH3 ☐ F F CH3 ☐ O Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms ofarrow_forwardClassify each of the following molecules as aromatic, antiaromatic, or nonaromatic. ZI NH Explanation Check O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic H O nonaromatic O aromatic O antiaromatic O nonaromatic ×arrow_forward
- Part I. Draw the stepwise reaction mechanism of each product (a, b, c, d, e, f) HO HO OH НОН,С HO OH Sucrose HO CH₂OH H N N HO -H H -OH KMnO4, Heat H OH CH₂OH (d) Phenyl Osatriazole OH НОН,С HO HO + Glacial HOAC HO- HO CH₂OH OH HO Fructose (a) Glucose OH (b) H₂N HN (c) CuSO4-5H2O, ethanol H N N N HO ·H H OH H OH N CH₂OH OH (f) Phenyl Osazone H (e) Carboxy phenyl osatriazole Figure 2.1. Reaction Scheme for the Total Synthesis of Fine Chemicalsarrow_forwardWhich molecule is the most stable? Please explain.arrow_forwardPlease see photoarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co

