Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.8, Problem 2P
(a) Find l2 (currant through R2) in the circuit shown in Fig 17.48. (b) Find l3. (c) Find l1. (d) Find the total current in the circuit (e) Find the equivalent resistance in the circuit.
Figure 17.48
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You hold a spherical salad bowl 85 cm in front of your face with the bottom of the bowl facing you. The salad bowl is made of polished metal with a 40 cm radius of curvature. Where is the image of your 2.0 cm tall nose located? What is image's size, orientation, and nature. I keep getting the answer -26.2, but it keeps saying it is wrong. I just want to know what i'm doing wrong.
A converging lens with a focal length of 6.70 cm forms an image of a 4.60 mm tall real object that is to the left of the lens. The image is 1.50 cm tall and erect. Where are the object and image located? Is the image real or virtual? Please show all steps
No chatgpt pls will upvote
Chapter 17 Solutions
Applied Physics (11th Edition)
Ch. 17.3 - Two identical charges, each -8.0010-5C are...Ch. 17.3 - The force of repulsion between two identical...Ch. 17.3 - A charge of +3 010-6C exerts a force of 940 N on a...Ch. 17.3 - A charge of -3.010-8 C exerts a force of 0 045 N...Ch. 17.3 - When a -9.0-C charge is placed 0.12 cm from a...Ch. 17.3 - How far apart are two identical charges of +6.00 C...Ch. 17.3 - Three charges are located along the x-axis. Charge...Ch. 17.3 - Three charges are located along the x-axis Charge...Ch. 17.4 - An electric field has a positive test charge of...Ch. 17.4 - What is the field magnitude of an electric field...
Ch. 17.4 - An electric field exerts a force of 2 5010-4 N on...Ch. 17.4 - An electric field exerts a force of 3.0010-4 N on...Ch. 17.4 - An electric field of magnitude 0.450 N/C exerts a...Ch. 17.4 - An electric field of magnitude 0.370 N/C exerts a...Ch. 17.4 - What force is exerted on a test charge of 3.8610-5...Ch. 17.4 - What force is exerted on a test charge of 4.0010-5...Ch. 17.5 - Prob. 1PCh. 17.5 - Find the resistance of 315 ft of No. 24 copper...Ch. 17.5 - Prob. 3PCh. 17.5 - Prob. 4PCh. 17.5 - Prob. 5PCh. 17.5 - Prob. 6PCh. 17.5 - Prob. 7PCh. 17.5 - Prob. 8PCh. 17.5 - Prob. 9PCh. 17.5 - Find the length of a copper wire with resistance...Ch. 17.6 - A heating element operates on 115 V. If it has a...Ch. 17.6 - Prob. 2PCh. 17.6 - Prob. 3PCh. 17.6 - A heating coil operates on 220 V. If it draws 15.0...Ch. 17.6 - Find the resistance that draws 0.750 A on 115 V.Ch. 17.6 - What current does a75.0- resistance draw on 115 V?Ch. 17.6 - A heater operates on 220 V If it draws 12.5 A,...Ch. 17.6 - What current does a 50.0- resistance draw on 115...Ch. 17.6 - What current does a 175- resistance draw on 220VCh. 17.6 - A heater draws 3.50 A on 115 V. What is its...Ch. 17.6 - (a) What current does a 150- resistance draw on a...Ch. 17.6 - Prob. 12PCh. 17.6 - Electric characteristics of all consumer electric...Ch. 17.6 - What is the effective resistance of a television...Ch. 17.6 - Find the current used by a stereo with resistance...Ch. 17.6 - What is the current used by a microwave oven with...Ch. 17.7 - Three resistors of 2.00, 5.00, and 6.50 are...Ch. 17.7 - Find the current in Problem 1.Ch. 17.7 - Find the equivalent resistance in the circuit...Ch. 17.7 - Find the current through R2 in Problem 3 Figure...Ch. 17.7 - Find the current in the circuit shown in Fig....Ch. 17.7 - Find the voltage drop across R1 in Problem 5...Ch. 17.7 - What emf is needed for the circuit shown in Fig....Ch. 17.7 - Find the voltage drop across R3, in Problem 7...Ch. 17.7 - Find the equivalent resistance in the circuit...Ch. 17.7 - Find R3, in the circuit in Problem 9. Figure 17.34Ch. 17.7 - Find the values of R1. R2 and R3 in Fig. 17.35...Ch. 17.7 - Find the values of V1, R2, and V3 in Fig. 17.36....Ch. 17.7 - Find the values of R1, V2, and R3 in Fig. 17.37....Ch. 17.8 - (a) Find the equivalent resistance in the circuit...Ch. 17.8 - (a) Find l2 (currant through R2) in the circuit...Ch. 17.8 - (a) Find the resistance off R3 in the circuit in...Ch. 17.8 - (a) What is the equivalent resistance in the...Ch. 17.9 - (a) Which resistances are connected in parallel?...Ch. 17.9 - Prob. 2PCh. 17.9 - Prob. 3PCh. 17.9 - Find the voltage drop across R1. Figure 17.55Ch. 17.9 - Prob. 5PCh. 17.9 - What is the equivalent resistance of the...Ch. 17.9 - Prob. 7PCh. 17.9 - Prob. 8PCh. 17.9 - What is the voltage drop across the parallel part...Ch. 17.9 - Prob. 10PCh. 17.9 - Find the current through R5. Figure 17.56Ch. 17.9 - What is the voltage drop across R3? Figure 17.56Ch. 17.9 - Prob. 13PCh. 17.9 - Find the equivalent resistance of the parallel...Ch. 17.9 - Prob. 15PCh. 17.9 - What emf is required for the given current flow in...Ch. 17.9 - Find the voltage drop across the parallel...Ch. 17.9 - Find the voltage drop across R4. Figure 17.57Ch. 17.9 - Find the voltage drop across R6. Figure 17.57Ch. 17.9 - Prob. 20PCh. 17.9 - Figure 17.58 Use Fig. 17.58 in Problems 21 through...Ch. 17.9 - Find the current through R5. Figure 17.58 Use Fig....Ch. 17.9 - Find the voltage drop across R5. Figure 17.58 Use...Ch. 17.9 - Find the voltage drop across R4. Figure 17.58 Use...Ch. 17.9 - Find the current through R2. Figure 17.58 Use Fig....Ch. 17.10 - Prob. 1PCh. 17.10 - Prob. 2PCh. 17.10 - Prob. 3PCh. 17.10 - Prob. 4PCh. 17.10 - Prob. 5PCh. 17.10 - Prob. 6PCh. 17.10 - Prob. 7PCh. 17.10 - Prob. 8PCh. 17.10 - Prob. 9PCh. 17.10 - Prob. 10PCh. 17.10 - Prob. 11PCh. 17.12 - A cell has an emf of 1.50 V and an internal...Ch. 17.12 - Prob. 2PCh. 17.12 - The emf of a battery is 12 0 V. If the internal...Ch. 17.12 - Prob. 4PCh. 17.12 - Prob. 5PCh. 17.12 - Find the current in the circuit shown in Fig....Ch. 17.12 - Find the current in the circuit shown in Fig....Ch. 17.12 - Prob. 8PCh. 17.12 - Find the current in the circuit shown in Fig. 17...Ch. 17.12 - Find the total resistance in the circuit shown in...Ch. 17.13 - A heater draws 8.70 A on a 110-V line. What is its...Ch. 17.13 - What power is needed for a sander that draws 3.50...Ch. 17.13 - How many amperes will a 75.0-W lamp draw on a...Ch. 17.13 - Prob. 4PCh. 17.13 - How many amperes will a 750-W lamp draw on a 110-V...Ch. 17.13 - Find the cost to operate the lamp in Problem 5 for...Ch. 17.13 - Six 50.0-W bulbs are operated for 25.0 h on a...Ch. 17.13 - A small furnace uses 3.00 kW of power. If the cost...Ch. 17.13 - Will a 20.0-A fuse blow if a 1000-W hair dryer, a...Ch. 17.13 - How long could you operate a 1000-W soldering iron...Ch. 17.13 - Prob. 11PCh. 17.13 - Prob. 12PCh. 17.13 - Find the cost of operating a 3.00-A motor on a...Ch. 17.13 - How many amperes will a 60-W lamp draw on a 110-V...Ch. 17.13 - Using the following table, list two different...Ch. 17.13 - Using the preceding table, list two different...Ch. 17.13 - Find the power output of a cell phone charger that...Ch. 17.13 - A power supply for electronic devices delivers...Ch. 17.13 - At what rate does a light bulb convert electric...Ch. 17.13 - What power is used by a light that draws 2.00 A...Ch. 17.13 - How much electric energy (in joules) is delivered...Ch. 17.13 - A car has a 12.0-V battery. If the current through...Ch. 17.13 - (a) How much power does a television use if it...Ch. 17.13 - Prob. 24PCh. 17.13 - A digital timer is used on a 115-V line. (a) If...Ch. 17.13 - A current of 230 A is delivered to a truck starter...Ch. 17.13 - A job site generator delivers 205 A in 15.0 s in a...Ch. 17 - The atomic particle that carries a positive charge...Ch. 17 - The atomic particle that carries a negative charge...Ch. 17 - The process by which an object becomes charged...Ch. 17 - The process by which an object becomes permanently...Ch. 17 - The resistance of a wire is dependent on all of...Ch. 17 - Which of the following are good electric...Ch. 17 - The total resistance in a circuit containing...Ch. 17 - The current in a parallel circuit is given by a....Ch. 17 - The emf of a battery with cells connected in...Ch. 17 - The current in a battery with cells connected in...Ch. 17 - The current in a battery with cells connected in...Ch. 17 - Examples of dry cells include. a. lead-zinc cells....Ch. 17 - In your own words, describe how materials can...Ch. 17 - What particles make up an atom?Ch. 17 - What particles are located in the nucleus (center)...Ch. 17 - Where are electrons located in an atom?Ch. 17 - What are the two types of charge? What atomic...Ch. 17 - Describe the process of charging an electroscope...Ch. 17 - Describe the process of charging an electroscope...Ch. 17 - In your own words, describe Coulombs law of...Ch. 17 - Describe an electric field.Ch. 17 - Describe lightning.Ch. 17 - The flow of electrons through a conductor is...Ch. 17 - (a) The unit of current is the ______. (b) The...Ch. 17 - What effect does doubling the diameter of a wire...Ch. 17 - In your own words, explain Ohm s law.Ch. 17 - Differentiate between a series and a parallel...Ch. 17 - Differentiate between the equivalent resistance in...Ch. 17 - In using an electric instrument, with what range...Ch. 17 - Explain how a parallel water system compares to a...Ch. 17 - How does the current change in a circuit if the...Ch. 17 - How does the current change in a circuit if the...Ch. 17 - How would the resistance of a wire change if the...Ch. 17 - Explain the concept of electric potential.Ch. 17 - Explain the transfer of energy that occurs in a...Ch. 17 - Distinguish between a primary and a secondary...Ch. 17 - Explain recharging.Ch. 17 - Describe the function of an electrolyte.Ch. 17 - In your own words, describe the manner in which a...Ch. 17 - What is the effect of the internal resistance of a...Ch. 17 - The unit of electric power is the ____________.Ch. 17 - In your own words, explain the relationship among...Ch. 17 - Do we pay the utility company for our power use or...Ch. 17 - Explain the relationship among power, voltage, and...Ch. 17 - If the current in a circuit is increased by a...Ch. 17 - If the resistance in a circuit decreases by a...Ch. 17 - If the voltage and current in a circuit each...Ch. 17 - If the current increases in a circuit by a factor...Ch. 17 - Two charges, each -4.50 C, are 0.150 cm apart....Ch. 17 - The repulsive force between two identical negative...Ch. 17 - A charge of 2.50 10-8 C exerts a force of 0.0250...Ch. 17 - A positive test charge of 2.50 C is placed in an...Ch. 17 - Find the magnitude of the electric field in which...Ch. 17 - What force is exerted on a test charge of 4.25 ...Ch. 17 - Prob. 7RPCh. 17 - Prob. 8RPCh. 17 - Prob. 9RPCh. 17 - Prob. 10RPCh. 17 - Find the cross-sectional area of copper wire at...Ch. 17 - A heating element operates on 115 V. If it has a...Ch. 17 - A heating coil operates on 220 V. If it draws 8.75...Ch. 17 - What current does a 234- resistance draw on 115 V?Ch. 17 - Four resistors of 3.40 , 6.54 , 8.32 , and 1.34 ...Ch. 17 - Find the current in Problem 15.Ch. 17 - Find the emf in the circuit shown in Fig. 17.78....Ch. 17 - Find the equivalent resistance in the circuit...Ch. 17 - Prob. 19RPCh. 17 - Find the equivalent resistance in the circuit...Ch. 17 - Find the current in Fig. 17 80. Figure 17.80Ch. 17 - Find the current through R1 in Fig. 17.80. Figure...Ch. 17 - Find the current through R2 in Fig. 17.80. Figure...Ch. 17 - Prob. 24RPCh. 17 - Find the current through R3 in Fig. 17.81. Figure...Ch. 17 - Find the current through R1 in Fig. 17.81; through...Ch. 17 - Find the equivalent resistance in Fig. 17.82....Ch. 17 - Prob. 28RPCh. 17 - Find the voltage drop across R5 in Fig. 17.82....Ch. 17 - Prob. 30RPCh. 17 - Find the voltage drop across R1 in Fig. 17.82....Ch. 17 - Figure 17.83Ch. 17 - A cell has an emf of 1.44 V and an internal...Ch. 17 - Prob. 34RPCh. 17 - Prob. 35RPCh. 17 - Find the current in the circuit shown in Fig....Ch. 17 - Find the total resistance in the circuit shown in...Ch. 17 - What power is needed for a drill that draws 2.45 A...Ch. 17 - How many amperes will a 150-W light bulb draw on a...Ch. 17 - What is the cost to operate the lamp in Problem 39...Ch. 17 - If the cost of energy is 0.043/kWh, how long could...Ch. 17 - How many amperes will a 10-W lamp draw on a 110-V...Ch. 17 - A hydrogen atom contains one electron and one...Ch. 17 - A rod with charge -4.31 10-8 C is held 10 3 cm...Ch. 17 - Hairdryers work by blowing heat that is generated...Ch. 17 - A 1000-W microwave, a 40.0-W fluorescent light...Ch. 17 - A 700-W toaster is plugged into a 110-V outlet....
Additional Science Textbook Solutions
Find more solutions based on key concepts
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
19. Feather color in parakeets is produced by the blending of pigments produced from two biosynthetic pathways ...
Genetic Analysis: An Integrated Approach (3rd Edition)
How is migration based on circannual rhythms poorly suited for adaptation to global climate change?
Campbell Biology (11th Edition)
35. For the reaction shown, calculate how many grams of each product form when the given amount of each reactan...
Introductory Chemistry (6th Edition)
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- need help part earrow_forwardCritical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible. Experiment with changing c to find the critical damping constant. Use the same initial conditions as in the last problem. Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.arrow_forwardNASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…arrow_forward
- 12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?arrow_forwardneed help part darrow_forwardA cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following. Assume +x is in the eastward direction. (a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.) magnitude direction For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…arrow_forward
- î A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forward
- For which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forwardA map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY