Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.12, Problem 5P
(a)
To determine
Find the current in the external circuit.
(b)
To determine
Find the emf of the battery.
(c)
To determine
Find the internal resistance of the battery.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Each of the six real batteries in the figure has an emf of 18.6 V and a resistance of 3.89 0. (a) What is the current through the (external)
resistance R=3.5102? (b) What is the potential difference across each battery? (c) What is the power of each battery? (d) At what rate
does each battery transfer energy to internal thermal energy?
(a) Number
IM
(b) Number i
MI
(c) Number i
IM
(d) Number i
Units A
Units V
Units W
Units
W
R
>
<
A battery has emf 30.0 V and internal resistance r. A 9.00 Ω resistor is connected to the terminals of the battery, and the voltage drop across the resistor is 27.0 V. What is the internal resistance of the battery?
Each of the six real batteries in the figure has an emf of 20.3 V and a resistance of 4.120. (a) What is the current through the (external)
resistance R=3.57 0? (b) What is the potential difference across each battery? (c) What is the power of each battery? (d) At what rate
does each battery transfer energy to internal thermal energy?
R
(a) Number
Units
Units
(b) Number
Units
(c) Number
Units
(d) Number
Chapter 17 Solutions
Applied Physics (11th Edition)
Ch. 17.3 - Two identical charges, each -8.0010-5C are...Ch. 17.3 - The force of repulsion between two identical...Ch. 17.3 - A charge of +3 010-6C exerts a force of 940 N on a...Ch. 17.3 - A charge of -3.010-8 C exerts a force of 0 045 N...Ch. 17.3 - When a -9.0-C charge is placed 0.12 cm from a...Ch. 17.3 - How far apart are two identical charges of +6.00 C...Ch. 17.3 - Three charges are located along the x-axis. Charge...Ch. 17.3 - Three charges are located along the x-axis Charge...Ch. 17.4 - An electric field has a positive test charge of...Ch. 17.4 - What is the field magnitude of an electric field...
Ch. 17.4 - An electric field exerts a force of 2 5010-4 N on...Ch. 17.4 - An electric field exerts a force of 3.0010-4 N on...Ch. 17.4 - An electric field of magnitude 0.450 N/C exerts a...Ch. 17.4 - An electric field of magnitude 0.370 N/C exerts a...Ch. 17.4 - What force is exerted on a test charge of 3.8610-5...Ch. 17.4 - What force is exerted on a test charge of 4.0010-5...Ch. 17.5 - Prob. 1PCh. 17.5 - Find the resistance of 315 ft of No. 24 copper...Ch. 17.5 - Prob. 3PCh. 17.5 - Prob. 4PCh. 17.5 - Prob. 5PCh. 17.5 - Prob. 6PCh. 17.5 - Prob. 7PCh. 17.5 - Prob. 8PCh. 17.5 - Prob. 9PCh. 17.5 - Find the length of a copper wire with resistance...Ch. 17.6 - A heating element operates on 115 V. If it has a...Ch. 17.6 - Prob. 2PCh. 17.6 - Prob. 3PCh. 17.6 - A heating coil operates on 220 V. If it draws 15.0...Ch. 17.6 - Find the resistance that draws 0.750 A on 115 V.Ch. 17.6 - What current does a75.0- resistance draw on 115 V?Ch. 17.6 - A heater operates on 220 V If it draws 12.5 A,...Ch. 17.6 - What current does a 50.0- resistance draw on 115...Ch. 17.6 - What current does a 175- resistance draw on 220VCh. 17.6 - A heater draws 3.50 A on 115 V. What is its...Ch. 17.6 - (a) What current does a 150- resistance draw on a...Ch. 17.6 - Prob. 12PCh. 17.6 - Electric characteristics of all consumer electric...Ch. 17.6 - What is the effective resistance of a television...Ch. 17.6 - Find the current used by a stereo with resistance...Ch. 17.6 - What is the current used by a microwave oven with...Ch. 17.7 - Three resistors of 2.00, 5.00, and 6.50 are...Ch. 17.7 - Find the current in Problem 1.Ch. 17.7 - Find the equivalent resistance in the circuit...Ch. 17.7 - Find the current through R2 in Problem 3 Figure...Ch. 17.7 - Find the current in the circuit shown in Fig....Ch. 17.7 - Find the voltage drop across R1 in Problem 5...Ch. 17.7 - What emf is needed for the circuit shown in Fig....Ch. 17.7 - Find the voltage drop across R3, in Problem 7...Ch. 17.7 - Find the equivalent resistance in the circuit...Ch. 17.7 - Find R3, in the circuit in Problem 9. Figure 17.34Ch. 17.7 - Find the values of R1. R2 and R3 in Fig. 17.35...Ch. 17.7 - Find the values of V1, R2, and V3 in Fig. 17.36....Ch. 17.7 - Find the values of R1, V2, and R3 in Fig. 17.37....Ch. 17.8 - (a) Find the equivalent resistance in the circuit...Ch. 17.8 - (a) Find l2 (currant through R2) in the circuit...Ch. 17.8 - (a) Find the resistance off R3 in the circuit in...Ch. 17.8 - (a) What is the equivalent resistance in the...Ch. 17.9 - (a) Which resistances are connected in parallel?...Ch. 17.9 - Prob. 2PCh. 17.9 - Prob. 3PCh. 17.9 - Find the voltage drop across R1. Figure 17.55Ch. 17.9 - Prob. 5PCh. 17.9 - What is the equivalent resistance of the...Ch. 17.9 - Prob. 7PCh. 17.9 - Prob. 8PCh. 17.9 - What is the voltage drop across the parallel part...Ch. 17.9 - Prob. 10PCh. 17.9 - Find the current through R5. Figure 17.56Ch. 17.9 - What is the voltage drop across R3? Figure 17.56Ch. 17.9 - Prob. 13PCh. 17.9 - Find the equivalent resistance of the parallel...Ch. 17.9 - Prob. 15PCh. 17.9 - What emf is required for the given current flow in...Ch. 17.9 - Find the voltage drop across the parallel...Ch. 17.9 - Find the voltage drop across R4. Figure 17.57Ch. 17.9 - Find the voltage drop across R6. Figure 17.57Ch. 17.9 - Prob. 20PCh. 17.9 - Figure 17.58 Use Fig. 17.58 in Problems 21 through...Ch. 17.9 - Find the current through R5. Figure 17.58 Use Fig....Ch. 17.9 - Find the voltage drop across R5. Figure 17.58 Use...Ch. 17.9 - Find the voltage drop across R4. Figure 17.58 Use...Ch. 17.9 - Find the current through R2. Figure 17.58 Use Fig....Ch. 17.10 - Prob. 1PCh. 17.10 - Prob. 2PCh. 17.10 - Prob. 3PCh. 17.10 - Prob. 4PCh. 17.10 - Prob. 5PCh. 17.10 - Prob. 6PCh. 17.10 - Prob. 7PCh. 17.10 - Prob. 8PCh. 17.10 - Prob. 9PCh. 17.10 - Prob. 10PCh. 17.10 - Prob. 11PCh. 17.12 - A cell has an emf of 1.50 V and an internal...Ch. 17.12 - Prob. 2PCh. 17.12 - The emf of a battery is 12 0 V. If the internal...Ch. 17.12 - Prob. 4PCh. 17.12 - Prob. 5PCh. 17.12 - Find the current in the circuit shown in Fig....Ch. 17.12 - Find the current in the circuit shown in Fig....Ch. 17.12 - Prob. 8PCh. 17.12 - Find the current in the circuit shown in Fig. 17...Ch. 17.12 - Find the total resistance in the circuit shown in...Ch. 17.13 - A heater draws 8.70 A on a 110-V line. What is its...Ch. 17.13 - What power is needed for a sander that draws 3.50...Ch. 17.13 - How many amperes will a 75.0-W lamp draw on a...Ch. 17.13 - Prob. 4PCh. 17.13 - How many amperes will a 750-W lamp draw on a 110-V...Ch. 17.13 - Find the cost to operate the lamp in Problem 5 for...Ch. 17.13 - Six 50.0-W bulbs are operated for 25.0 h on a...Ch. 17.13 - A small furnace uses 3.00 kW of power. If the cost...Ch. 17.13 - Will a 20.0-A fuse blow if a 1000-W hair dryer, a...Ch. 17.13 - How long could you operate a 1000-W soldering iron...Ch. 17.13 - Prob. 11PCh. 17.13 - Prob. 12PCh. 17.13 - Find the cost of operating a 3.00-A motor on a...Ch. 17.13 - How many amperes will a 60-W lamp draw on a 110-V...Ch. 17.13 - Using the following table, list two different...Ch. 17.13 - Using the preceding table, list two different...Ch. 17.13 - Find the power output of a cell phone charger that...Ch. 17.13 - A power supply for electronic devices delivers...Ch. 17.13 - At what rate does a light bulb convert electric...Ch. 17.13 - What power is used by a light that draws 2.00 A...Ch. 17.13 - How much electric energy (in joules) is delivered...Ch. 17.13 - A car has a 12.0-V battery. If the current through...Ch. 17.13 - (a) How much power does a television use if it...Ch. 17.13 - Prob. 24PCh. 17.13 - A digital timer is used on a 115-V line. (a) If...Ch. 17.13 - A current of 230 A is delivered to a truck starter...Ch. 17.13 - A job site generator delivers 205 A in 15.0 s in a...Ch. 17 - The atomic particle that carries a positive charge...Ch. 17 - The atomic particle that carries a negative charge...Ch. 17 - The process by which an object becomes charged...Ch. 17 - The process by which an object becomes permanently...Ch. 17 - The resistance of a wire is dependent on all of...Ch. 17 - Which of the following are good electric...Ch. 17 - The total resistance in a circuit containing...Ch. 17 - The current in a parallel circuit is given by a....Ch. 17 - The emf of a battery with cells connected in...Ch. 17 - The current in a battery with cells connected in...Ch. 17 - The current in a battery with cells connected in...Ch. 17 - Examples of dry cells include. a. lead-zinc cells....Ch. 17 - In your own words, describe how materials can...Ch. 17 - What particles make up an atom?Ch. 17 - What particles are located in the nucleus (center)...Ch. 17 - Where are electrons located in an atom?Ch. 17 - What are the two types of charge? What atomic...Ch. 17 - Describe the process of charging an electroscope...Ch. 17 - Describe the process of charging an electroscope...Ch. 17 - In your own words, describe Coulombs law of...Ch. 17 - Describe an electric field.Ch. 17 - Describe lightning.Ch. 17 - The flow of electrons through a conductor is...Ch. 17 - (a) The unit of current is the ______. (b) The...Ch. 17 - What effect does doubling the diameter of a wire...Ch. 17 - In your own words, explain Ohm s law.Ch. 17 - Differentiate between a series and a parallel...Ch. 17 - Differentiate between the equivalent resistance in...Ch. 17 - In using an electric instrument, with what range...Ch. 17 - Explain how a parallel water system compares to a...Ch. 17 - How does the current change in a circuit if the...Ch. 17 - How does the current change in a circuit if the...Ch. 17 - How would the resistance of a wire change if the...Ch. 17 - Explain the concept of electric potential.Ch. 17 - Explain the transfer of energy that occurs in a...Ch. 17 - Distinguish between a primary and a secondary...Ch. 17 - Explain recharging.Ch. 17 - Describe the function of an electrolyte.Ch. 17 - In your own words, describe the manner in which a...Ch. 17 - What is the effect of the internal resistance of a...Ch. 17 - The unit of electric power is the ____________.Ch. 17 - In your own words, explain the relationship among...Ch. 17 - Do we pay the utility company for our power use or...Ch. 17 - Explain the relationship among power, voltage, and...Ch. 17 - If the current in a circuit is increased by a...Ch. 17 - If the resistance in a circuit decreases by a...Ch. 17 - If the voltage and current in a circuit each...Ch. 17 - If the current increases in a circuit by a factor...Ch. 17 - Two charges, each -4.50 C, are 0.150 cm apart....Ch. 17 - The repulsive force between two identical negative...Ch. 17 - A charge of 2.50 10-8 C exerts a force of 0.0250...Ch. 17 - A positive test charge of 2.50 C is placed in an...Ch. 17 - Find the magnitude of the electric field in which...Ch. 17 - What force is exerted on a test charge of 4.25 ...Ch. 17 - Prob. 7RPCh. 17 - Prob. 8RPCh. 17 - Prob. 9RPCh. 17 - Prob. 10RPCh. 17 - Find the cross-sectional area of copper wire at...Ch. 17 - A heating element operates on 115 V. If it has a...Ch. 17 - A heating coil operates on 220 V. If it draws 8.75...Ch. 17 - What current does a 234- resistance draw on 115 V?Ch. 17 - Four resistors of 3.40 , 6.54 , 8.32 , and 1.34 ...Ch. 17 - Find the current in Problem 15.Ch. 17 - Find the emf in the circuit shown in Fig. 17.78....Ch. 17 - Find the equivalent resistance in the circuit...Ch. 17 - Prob. 19RPCh. 17 - Find the equivalent resistance in the circuit...Ch. 17 - Find the current in Fig. 17 80. Figure 17.80Ch. 17 - Find the current through R1 in Fig. 17.80. Figure...Ch. 17 - Find the current through R2 in Fig. 17.80. Figure...Ch. 17 - Prob. 24RPCh. 17 - Find the current through R3 in Fig. 17.81. Figure...Ch. 17 - Find the current through R1 in Fig. 17.81; through...Ch. 17 - Find the equivalent resistance in Fig. 17.82....Ch. 17 - Prob. 28RPCh. 17 - Find the voltage drop across R5 in Fig. 17.82....Ch. 17 - Prob. 30RPCh. 17 - Find the voltage drop across R1 in Fig. 17.82....Ch. 17 - Figure 17.83Ch. 17 - A cell has an emf of 1.44 V and an internal...Ch. 17 - Prob. 34RPCh. 17 - Prob. 35RPCh. 17 - Find the current in the circuit shown in Fig....Ch. 17 - Find the total resistance in the circuit shown in...Ch. 17 - What power is needed for a drill that draws 2.45 A...Ch. 17 - How many amperes will a 150-W light bulb draw on a...Ch. 17 - What is the cost to operate the lamp in Problem 39...Ch. 17 - If the cost of energy is 0.043/kWh, how long could...Ch. 17 - How many amperes will a 10-W lamp draw on a 110-V...Ch. 17 - A hydrogen atom contains one electron and one...Ch. 17 - A rod with charge -4.31 10-8 C is held 10 3 cm...Ch. 17 - Hairdryers work by blowing heat that is generated...Ch. 17 - A 1000-W microwave, a 40.0-W fluorescent light...Ch. 17 - A 700-W toaster is plugged into a 110-V outlet....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the terminals of a battery with zero internal resistance are connected across two identical resistors in series, the total power delivered by the battery is 8.00 W. If the same battery is connected across the same resistors in parallel, what is the total power delivered by the battery? (a) 16.0 W (b) 32.0 W (c) 2.00 W (d) 4.00 W (e) none of those answersarrow_forwardA 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forwardA child’s electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 in series with a 1.53-V carbon-zinc dry cell having a 0.100- internal resistance. The load resistance is 10.0 . (a) Draw a circuit diagram of the toy and its batteries, (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?arrow_forward
- When operating on a 120-V circuit, an electric heater receives 1.30 103 W of power, a toaster receives 1.00 103 W, and an electric oven receives 1.54 103 W. If all three appliances are connected in parallel on a 120-V circuit and turned on, what is the total current drawn from an external source? (a) 24.0 A (b) 32.0 A (c) 40.0 A (d) 48.0 A (e) none of those answersarrow_forwardElectric current I enters a node with three resistors connected in parallel (Fig. CQ18.5). Which one of the following is correct? (a) I1 = I and I2 = I3 = 0. (b) I2 I1 and I2 I3. (c) V1 V2 V3 (d) I1 I2 I3 0. Figure CQ18.5arrow_forwardWhen a light bulb is connected across the terminals of a battery, the battery delivers 26 W of power to the bulb. A voltage of 10.4 V exists between the terminals of the battery, which has an internal resistance of 0.15 Ω. What is the emf of the battery?Varrow_forward
- A battery has an emf of 14.0 V and an internal resistance of 0.08 ohms. Its terminals are connected to a load resistance of 3.00 ohms (A) Find the terminal voltage of the battery. (B) Calculate the power delivered to the load resistor and the power to the internal resistance of the battery.arrow_forwardA solar cell generates a potential difference of 0.17 V when a 520 0 resistor is connected across it, and a potential difference of 0.25 V when a 940 resistor is substituted. What are the (a) internal resistance and (b) emf of the solar cell? (c) The area of the cell is 2.5 cm? and the rate per unit area at which it receives energy from light is 5.1 mW/cm². What is the efficiency of the cell for converting light energy to thermal energy in the 940 Q external resistor? (a) Number i Units (b) Number i Units (c) Number Units > >arrow_forwardA solar cell generates a potential difference of 0.17 V when a 550 resistor is connected across it, and a potential difference of 0.24 V when a 970 resistor is substituted. What are the (a) internal resistance and (b) emf of the solar cell? (c) The area of the cell is 1.2 cm² and the rate per unit area at which it receives energy from light is 4.9 mW/cm². What is the efficiency of the cell for converting light energy to thermal energy in the 970 2 external resistor? (a) Number (b) Number (c) Number i Units Units Units Ω V perarrow_forward
- Two resistors are connected in series in a circuit with a battery. The electromotive force (emf) of the battery is 3.0 volts. The resistances are 0.40 ohms and 1.85 ohms. (a) Determine the current I. Hint: The same current flows through both resistors. The voltage drop across the two resistors, i.e. IR₁ ✈ IR₂, is equal to the emf. (d) Determine the power in the first resistor. 1.78 W (e) Determine the power in the second resistor. 2.49 Warrow_forwardA battery has an emf of 15.0 V. The terminal voltage of the battery is 10.8 V when it is delivering 26.0 W of power to an external load resistor R. (a) What is the value of R? (b) What is the internal resistance of the battery?arrow_forwardA solar cell generates a potential difference of 0.10 V when a 500ohm resistor is connected across it, and a potential difference of 0.15 V when a 1000 ohm resistor is substituted.What are the (a) internal resistance and (b) emf of the solar cell? (c) The area of the cell is 5.0 cm2, and the rate per unit area at which it receives energy from light is 2.0 mW/cm2.What is the efficiency of the cell for converting light energy to thermal energy in the 1000 ohm external resistor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning