Verifying Stokes’ Theorem Verify that the line integral and the surface integral of Stokes ’ Theorem are equal for the following vector fields, surfaces S. and closed curves C. Assume that C has counterclockwise orientation and S has a consistent orientation. 7. F = 〈 x , y , z 〉 ; S is the paraboloid z = 8 – x 2 – y 2 , for 0 ≤ z ≤ 8, and C is the circle x 2 + y 2 = 8 in the xy -plane.
Verifying Stokes’ Theorem Verify that the line integral and the surface integral of Stokes ’ Theorem are equal for the following vector fields, surfaces S. and closed curves C. Assume that C has counterclockwise orientation and S has a consistent orientation. 7. F = 〈 x , y , z 〉 ; S is the paraboloid z = 8 – x 2 – y 2 , for 0 ≤ z ≤ 8, and C is the circle x 2 + y 2 = 8 in the xy -plane.
Solution Summary: The author explains the Stokes' Theorem, wherein the line integral and surface integral are equal.
Verifying Stokes’ TheoremVerify that the line integral and the surface integral of Stokes’ Theorem are equal for the following vector fields, surfaces S. and closed curves C. Assume that C has counterclockwise orientation and S has a consistent orientation.
7.F = 〈x, y, z〉 ; S is the paraboloid z = 8 – x2 – y2, for 0 ≤ z ≤ 8, and C is the circle x2 + y2 = 8 in the xy-plane.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
17. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.2.050.
Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)
du
4√3-
-4²
Need Help? Read It
SUBMIT ANSWER
18. [-/1 Points] DETAILS
MY NOTES
SESSCALCET2 6.2.051.
Evaluate the integral. (Use C for the constant of integration.)
-
49
dx
x²
+3
Need Help?
Read It
Watch It
SUBMIT ANSWER
19. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.2.057.
Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)
25+ x2
dx
Let (5,3,-7) and = (2, -3, -6).
=
Compute the following:
u× u =
-4(u xv)
ux (-4v)
(+v) × v=
Let a = (4, -2, -7) and 6 = (2,5, 3).
(ã − ò) × (ã + b) =
Chapter 17 Solutions
Calculus, Early Transcendentals, Single Variable Loose-Leaf Edition Plus MyLab Math with Pearson eText - 18-Week Access Card Package
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY