Heat flux The heat flow vector field for conducting objects is F = – k ▿ T , where T ( x , y , z ) is the temperature in the object and k > 0 is a constant that depends on the material. Compute the outward flux of F across the following surfaces S for the given temperature distributions. Assume k = 1. 61. T ( x , y , z ) = 100 e − x − y ; S consists of the faces of the cube | x | ≤ 1 , | y | ≤ 1 , | z | ≤ 1 .
Heat flux The heat flow vector field for conducting objects is F = – k ▿ T , where T ( x , y , z ) is the temperature in the object and k > 0 is a constant that depends on the material. Compute the outward flux of F across the following surfaces S for the given temperature distributions. Assume k = 1. 61. T ( x , y , z ) = 100 e − x − y ; S consists of the faces of the cube | x | ≤ 1 , | y | ≤ 1 , | z | ≤ 1 .
Solution Summary: The author explains how to compute the outward flux of F across the surface S.
Heat fluxThe heat flow vector field for conducting objects isF = –k▿T, where T(x, y, z) is the temperature in the object and k > 0 is a constant that depends on the material. Compute the outward flux ofFacross the following surfaces S for the given temperature distributions. Assume k = 1.
61.
T
(
x
,
y
,
z
)
=
100
e
−
x
−
y
; S consists of the faces of the cube
|
x
|
≤
1
,
|
y
|
≤
1
,
|
z
|
≤
1
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
3.1 Limits
1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice.
x+3°
x+3*
x+3
(a) Is 5
(c) Does not exist
(b) is 6
(d) is infinite
1 pts
Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and
G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is
Question 1
-0.246
0.072
-0.934
0.478
-0.914
-0.855
0.710
0.262
.
2. Answer the following questions.
(A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity
Vx (VF) V(V •F) - V²F
(B) [50%] Remark. You are confined to use the differential identities.
Let u and v be scalar fields, and F be a vector field given by
F = (Vu) x (Vv)
(i) Show that F is solenoidal (or incompressible).
(ii) Show that
G =
(uvv – vVu)
is a vector potential for F.
Chapter 17 Solutions
Calculus, Early Transcendentals, Single Variable Loose-Leaf Edition Plus MyLab Math with Pearson eText - 18-Week Access Card Package
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY