THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
8th Edition
ISBN: 9781307434316
Author: CENGEL
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 17.7, Problem 58P
To determine
The critical velocity, pressure, temperature, and density in the nozzle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
At the inlet to an axial diffuser the velocity of the approaching air is 420 m/s, the stagnation pressure is 300 kPa, and the stagnation temperature is 600 K. At exit the stagnation pressure is 285 kPa and the static pressure 270 kPa. Using compressible flow analysis, determine(i) the static temperature, static pressure, and Mach number at inlet and the diffuser efficiency;(ii) the Mach numbers at exit and entry.For air take γ ¼ 1.376 and R ¼ 287 J/(kg K).
Air enters a nozzle at 200 KPa, 360 K and a velocity of 180 meter per second . Assuming
isentropic or adiabatic flow, if the pressure and temperature of air at a location where the air
velocity equals the speed of sound, the Mach number at the nozzle inlet is Blank 1.
The properties of air are: k = 1.4; Cp = 1005 J/kg-K; R = 287 J/kg-K.
***EXPRESS YOUR ANSWER in TWO (2) DECIMAL PLACE and WITHOUT UNITS****
Solve the question 5, please.
Chapter 17 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
Ch. 17.7 - A high-speed aircraft is cruising in still air....Ch. 17.7 - What is dynamic temperature?Ch. 17.7 - Prob. 3PCh. 17.7 - Prob. 4PCh. 17.7 - Prob. 5PCh. 17.7 - Calculate the stagnation temperature and pressure...Ch. 17.7 - Prob. 7PCh. 17.7 - Prob. 8PCh. 17.7 - Prob. 9PCh. 17.7 - Prob. 10P
Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - Prob. 27PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 30PCh. 17.7 - Prob. 31PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Prob. 38PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Prob. 44PCh. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 48PCh. 17.7 - Prob. 49PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 55PCh. 17.7 - Prob. 56PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 62PCh. 17.7 - Prob. 63PCh. 17.7 - Prob. 64PCh. 17.7 - Prob. 65PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 67PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Prob. 80PCh. 17.7 - Prob. 81PCh. 17.7 - Prob. 82PCh. 17.7 - Prob. 83PCh. 17.7 - Prob. 84PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 89PCh. 17.7 - Prob. 90PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 92PCh. 17.7 - Prob. 93PCh. 17.7 - Prob. 96PCh. 17.7 - Prob. 97PCh. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 103PCh. 17.7 - Prob. 104PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Prob. 108PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113PCh. 17.7 - Prob. 114PCh. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Prob. 116PCh. 17.7 - Prob. 117PCh. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 119PCh. 17.7 - Prob. 120RPCh. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 127RPCh. 17.7 - Prob. 128RPCh. 17.7 -
17–129 Helium enters a nozzle at 0.6 MPa, 560...Ch. 17.7 - Prob. 130RPCh. 17.7 - Prob. 132RPCh. 17.7 - Prob. 133RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 136RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 -
17–140 Helium expands in a nozzle from 1 MPa,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 145RPCh. 17.7 - Prob. 146RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 151RPCh. 17.7 - Prob. 154FEPCh. 17.7 - Prob. 155FEPCh. 17.7 - Prob. 156FEPCh. 17.7 - Prob. 157FEPCh. 17.7 - Prob. 158FEPCh. 17.7 - Prob. 159FEPCh. 17.7 - Prob. 160FEPCh. 17.7 - Prob. 161FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ideal gas flows through a passage that first converges and then diverges during an adiabatic, reversible, steady-flow process. For supersonic flow at the inlet, sketch the variation of pressure, velocity, and Mach number along the length of the nozzle when the Mach number at the minimum flow area is equal to unity.arrow_forwardFind what is needed and make sure that the solution is correct as shown in the answer to the questionarrow_forward3. A converging-diverging nozzle is designed to operate isentropically with air at an exit Mach number of 1.75. The nozzle exit area is 0.12 m². For a constant chamber pressure and temperature of 5 MPa and 200°C, respectively, calculate the following: (a) Maximum back pressure to choke nozzle (b) Flow rate in kilograms per second for a back pressure of 101 kPa (c) Flow rate for a back pressure of 1 MPa.arrow_forward
- Q1: Air enters a converging-diverging nozzle of a supersonic wind tunnel at 1 MPa and 300 K with a low velocity. If a normal shock wave occurs at the exit plane of the nozzle at Ma = 2.4, determine the pressure, temperature, Mach number, velocity, and stagnation pressure after the shock wave.arrow_forwardAs an airplane flying with constant velocity moves from a cold air mass into a warm air mass, how does the Mach number change? increases decreases remains the samearrow_forward3. Air enters a converging-diverging nozzle at 1.50 MPa and 900 K with a negligible velocity. The flow is steady, one-dimensional, and isentropic with k =1.4. For an exit Mach number of Ma = 2.4 and a throat area of 15 cm2, determine (a) the T, P and p in the throat, (b) the T, P and p in the exit plane, including the exit area, and (c) the mass flow rate through the nozzlearrow_forward
- 1- An ideal gas with k = 1.4 is flowing through a nozzle such that the Mach number is 2.4 where the flow area is 25 cm2. Assuming the flow to be isentropic, determine the flow area at the location where the Mach number is 1.2arrow_forwardThe ratio of stagnation temperature at the exit and entry of a combustion chamber is 3.75. If the pressure, temperature and flow Mach number at the exit are 2.5 bar, 1000°C and 0.9 respectively, determine (i) Mach number, pressure and temperature of the gas at entry, (ii) total heat supplied per kg of gas, and (iii) the maximum heat that can be supplied. Take y= 1.4 and C, = 1.2 kJ/kg K. [Ans. M1 = 0.255, p1 1.9 bar, T, = 391.4 K, Q = 1301.7 kJ/kg, Qmax 1315.82 kJ/kg]arrow_forward4. It is important to remember that the isentropic relations and normal shock relationsare monotonic with Mach number and can be inverted. To illustrate this, consider thefollowing problems,(a) Given a total temperature to static temperature ratio of 4, determine the Machnumber.(b) If the entropy rises by ∆s/R = 1.0 across a shock, determine the pre- and post-shock Mach numbers and the static pressure jump (p2/p1).arrow_forward
- Question B2 A civilian aircraft is flying at a Mach number of 0.8 at an altitude where the ambient pressure and temperature are 26.5 kPa and 223 K, respectively. The aircraft is equipped with two simple turbojet engines. The stagnation temperature at the entrance to their nozzles is 1200K and remains unchanged. You may assume the nozzles are operating under ideal conditions and the properties of hot gases leaving the nozzles are the same as air. 1- Under certain operating conditions each engine produces a gross thrust of 50×10³ N with an exit velocity of 600 m/s. For each nozzle determine its mass flow rate, exit area and the corresponding stagnation pressure at its entrance. 2- For a fuel to air ratio of 0.02, determine the net thrust of each engine corresponding to the above (part 1) operating condition. 3- What should be the minimum supply pressure to the nozzles if they were operating at choked condition? Then determine the gross thrust of each nozzle. 4- Show that for a choked…arrow_forward1 atm = 2116 lb/ft2 = 1.01 × 105 N/m2. In the reservoir of a supersonic wind tunnel, the velocity is negligible, andthe temperature is 1000 K. The temperature at the nozzle exit is 600 K.Assuming adiabatic flow through the nozzle, calculate the velocity atthe exit.arrow_forwardSaturated steam enters a converging–diverging nozzle at 1.75 MPa, 10 percent moisture, and negligible velocity, and it exits at 1.2 MPa. The nozzle exit area is 28 cm2. i) Determine the throat area, exit velocity, mass flow rate, and exit Mach number if the nozzle is isentropic. ii) Determine the throat area, exit velocity, mass flow rate, and exit Mach number if the nozzle is isentropic and has an efficiency of 92 percent.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License