Helium expands in a nozzle from 220 psia, 740 R, and negligible velocity to 15 psia. Calculate the throat and exit areas for a mass flow rate of 0.2 lbm/s, assuming the nozzle is isentropic. Why must this nozzle be converging–diverging?

The throat and exit area of the nozzle.
Answer to Problem 137RP
The throat area of nozzle is
The exit area is
Explanation of Solution
It is given that the initial velocity is negligible. Hence, the inlet properties are equal to the stagnation properties at inlet.
Consider the flow through the nozzle is isentropic. Hence, the stagnation properties at inlet and exit equal.
Write the formula for the critical temperature of the mixture.
Here, the critical temperature of mixture is
Write the formula for the critical pressure of the mixture.
Here, the critical pressure of mixture is
Write the formula for the critical density.
Here, the critical density of mixture is
Write the formula for critical velocity of helium gas through the nozzle.
Here, the superscript
Write the formula for mass flow rate of helium at throat region.
Here, the cross sectional area of the throat is
Rearrange the Equation (V) to obtain
Refer Table A-1E, “Molar mass, gas constant, and critical-point properties”.
The gas constant
Refer Table A-2E, “Ideal-gas specific heats of various common gases”.
The specific heat ratio
Write the formula of ratio of stagnation pressure to the static pressure at exit of the nozzle.
Here, the actual (static) pressure at the exit of nozzle is
Write the formula of ratio of stagnation temperature to the static temperature at exit of the nozzle.
Here, the actual (static) temperature at the exit of nozzle is
Write the formula for velocity of sound at the exit conditions.
Here, speed of sound at the exit condition is
Write formula for the velocity of air at exit.
Write the formula for mass flow rate of air at exit condition.
Here, the exit cross sectional area is
Rearrange the Equation (X) to obtain
Conclusion:
Substitute
Substitute
Substitute
Substitute 1.667 for
Substitute
Equation (VI).
Thus, the throat area of nozzle is
Substitute
Here, the downstream Mach number
Substitute
Substitute
Substitute
Thus, the exit area is
Want to see more full solutions like this?
Chapter 17 Solutions
THERMODYNAMICS(SI UNITS,INTL.ED)EBOOK>I
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardThis is an old practice exam. Fce = 110lb and FBCD = 62 lb but whyarrow_forward
- Quiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1 = 4mm, for w2 h2 = 6mm, and for w3 is h3 =6.5 mm. Determine the safety factor (S.f) for the welds. F=29 kN. Use an AWS Electrode type (E100xx). 163 mm S 133 mm 140 mm Please solve the question above I solved the question but I'm sure the answer is wrong the link : https://drive.google.com/file/d/1w5UD2EPDiaKSx3W33aj Rv0olChuXtrQx/view?usp=sharingarrow_forwardQ2: (15 Marks) A water-LiBr vapor absorption system incorporates a heat exchanger as shown in the figure. The temperatures of the evaporator, the absorber, the condenser, and the generator are 10°C, 25°C, 40°C, and 100°C respectively. The strong liquid leaving the pump is heated to 50°C in the heat exchanger. The refrigerant flow rate through the condenser is 0.12 kg/s. Calculate (i) the heat rejected in the absorber, and (ii) the COP of the cycle. Yo 8 XE-V lo 9 Pc 7 condenser 5 Qgen PG 100 Qabs Pe evaporator PRV 6 PA 10 3 generator heat exchanger 2 pump 185 absorberarrow_forwardQ5:(? Design the duct system of the figure below by using the balanced pressure method. The velocity in the duct attached to the AHU must not exceed 5m/s. The pressure loss for each diffuser is equal to 10Pa. 100CFM 100CFM 100CFM ☑ ☑ 40m AHU -16m- 8m- -12m- 57m 250CFM 40m -14m- 26m 36m ☑ 250CFMarrow_forward
- A mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forwardMy ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forward
- My ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forwardplease solve this problem step by steparrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning


