Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral ∬ s ( ∇ × F ) ∙ n dS . Assume n points in an upward direction. 23. F = 〈 y , 1 , z 〉 ; S is the part of the surface z = 2 x that lies within the cone z = x 2 + y 2 .
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral ∬ s ( ∇ × F ) ∙ n dS . Assume n points in an upward direction. 23. F = 〈 y , 1 , z 〉 ; S is the part of the surface z = 2 x that lies within the cone z = x 2 + y 2 .
Solution Summary: The author evaluates the surface integral by obtaining line integral in Stokes' theorem, where n is the unit vector normal to S determined by the orientation of S.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in stokes’ Theorem to determine the value of the surface integral
∬
s
(
∇
×
F
)
∙ndS. Assume n points in an upward direction.
23.
F
=
〈
y
,
1
,
z
〉
; S is the part of the surface
z
=
2
x
that lies within the cone
z
=
x
2
+
y
2
.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
1. The graph of ƒ is given. Use the graph to evaluate each of the following values. If a value does not exist,
state that fact.
и
(a) f'(-5)
(b) f'(-3)
(c) f'(0)
(d) f'(5)
2. Find an equation of the tangent line to the graph of y = g(x) at x = 5 if g(5) = −3 and g'(5)
=
4.
-
3. If an equation of the tangent line to the graph of y = f(x) at the point where x 2 is y = 4x — 5, find ƒ(2)
and f'(2).
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.