Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stakes’ Theorem to determine the value of the surface integral ∬ S ( ∇ × F ) ⋅ n d S . Assume that n points in an upward direction. 20. F = 〈 x + y , y + z , z + x 〉; S is the titled disk enclosed by r ( t ) = 〈cos t , 2 sin t , 3 cos t 〉.
Stokes’ Theorem for evaluating surface integrals Evaluate the line integral in Stakes’ Theorem to determine the value of the surface integral ∬ S ( ∇ × F ) ⋅ n d S . Assume that n points in an upward direction. 20. F = 〈 x + y , y + z , z + x 〉; S is the titled disk enclosed by r ( t ) = 〈cos t , 2 sin t , 3 cos t 〉.
Solution Summary: The author explains Stokes' Theorem: Let S be an oriented surface with a piecewise-smooth closed boundary C whose orientation is consistent with that of S.
Stokes’ Theorem for evaluating surface integralsEvaluate the line integral in Stakes’ Theorem to determine the value of the surface integral
∬
S
(
∇
×
F
)
⋅
n
d
S
. Assume thatnpoints in an upward direction.
20.F = 〈x + y, y + z, z + x〉; S is the titled disk enclosed by r(t) = 〈cos t, 2 sin t,
3
cos
t
〉.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Consider the following system of equations, Ax=b :
x+2y+3z - w = 2
2x4z2w = 3
-x+6y+17z7w = 0
-9x-2y+13z7w = -14
a. Find the solution to the system. Write it as a parametric equation. You can use a
computer to do the row reduction.
b. What is a geometric description of the solution? Explain how you know.
c. Write the solution in vector form?
d. What is the solution to the homogeneous system, Ax=0?
2. Find a matrix A with the following qualities
a. A is 3 x 3.
b. The matrix A is not lower triangular and is not upper triangular.
c. At least one value in each row is not a 1, 2,-1, -2, or 0
d. A is invertible.
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.