Concept explainers
A bullet weighing 0.08 lb is fired with a horizontal velocity of 1800 ft/s into the lower end of a slender 15-lb bar of length L = 30 in. Knowing that h = 12 in. and that the bar is initially at rest, determine (a) the angular velocity of the bar immediately after the bullet becomes embedded, (b) the impulsive reaction at C, assuming that the bullet becomes embedded in 0.001 s.
Fig. P17.97
Trending nowThis is a popular solution!
Chapter 17 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Additional Engineering Textbook Solutions
Introduction to Heat Transfer
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
Fluid Mechanics Fundamentals And Applications
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
Fundamentals of Heat and Mass Transfer
- 17.86 A 65-lb uniform circular plate of radius r is supported by a ball- and-socket joint at point A and is at rest in the vertical xy plane when a bul- let weighing 0.03 lb is fired with the velocity vo -(700 ft/s)k and hits the 28 in., determine (a) the plate at point C. Knowing that r = 16 in. and h angular velocity of the plate immediately after the bullet becomes embed- ded. (b) the impulsive reaction at point A, assuming that the bullet becomes embedded in 1.1 ms. Fig. P17.86 y Barrow_forward3. (17.21) A collar at point C with a mass of 1 kg is rigidly attached at a distance d = 300 mm from the end of a uniform slender rod AB. The rod has a mass of 3 kg and has a length of L = 600 mm. Knowing that the rod is released from rest in the position shown, determine the angular velocity of the rod after it has rotated through 90°. Notes: Ignore rotation of the collar since its dimensions are negligible. The controidal moment of inertia of the rod is I = m[² 12 L d Position 1 Position 1 B B A Position 2 L A' ctivate Windowsarrow_forward196 A uniform slender rod AB is at rest on a frictionless horizontal table when end A of the rod is struck by a hammer which delivers an im- that is perpendicular to the rod. In the subsequent motion, determine distance b through which the rod will move each time it completes a full revolution. Fig. P17.96 Barrow_forward
- The ABC bar has a mass of 2.4 kg and is connected to a support on B. An 800 g D sphere reaches the end A of the bar with a vertical velocity v1 of 3 m / s. Knowing that L = 750 mm and that the coefficient of refund between the sphere and the ABC bar is equal to 0.5, determine immediately after the shock, the angular velocity of the ABC bar and the velocity of the sphere.arrow_forward17.48 A 6-lb sphere of radius r = 5 in. with an initial clockwise angu- lar velocity wo = 90 rad/s is placed in the corner formed by the floor and a vertical wall. Knowing that the coefficient of kinetic friction is 0.10 at A and B, determine the time required for the sphere to come to rest. A Fig. P17.47 and P17.48arrow_forward5. Fig. 3 shows the overhead view of a uniform thin rod of length I and mass M that can rotate freely about a fixed axis on a horizontal surface. The rod is at rest initially with moment of inertia MI². A bullet of mass m is fired towards one end of the rod with initial velocity v. After piercing the rod, the bullet's velocity is reduced to v. The angular velocity of the rod after being shot through is ( ) 3mv А. 2ML 7mv В. 4ML overhead view mv C. MI Fig 3 D. 5mv 3MIarrow_forward
- angular velocity at position 2 Select one: a. 9.38 b. 4.88 c. 7.32 d. 12.38 e. 15.20arrow_forwardA bullet of mass m is fired with a horizontal velocity v0 and at a height h = ½ R into a wooden disk of much larger mass M and radius R . The disk rests on a horizontal plane and the coefficient of friction between the disk and the plane is finite. (a) Determine the linear V1 and the angular velocity w1 of the disk immediately after the bullet has penetrated the disk. (b) Describe the ensuing motion of the disk and determine its linear velocity after the motion has become uniform.arrow_forwardA bar of mass m = 5 kg is held as shown between four disks each of mass m’ = 2 kg and radius r = 75 mm. Knowing that the forces exerted on the disks are sufficient to prevent slipping and that the bar is released from rest, for each of the cases shown, determine the velocity of the bar after it has moved through the distance h.arrow_forward
- A 16-lb wooden panel is suspended from a pin support at A and is initially at rest. A 4-lb metal sphere is released from rest at B’ and falls into a hemispherical cup C’ attached to the panel at the same level as the mass center G. Assuming that the impact is perfectly plastic, determine the velocity of the mass center G of the panel immediately after the impact.arrow_forwardI need the answer quicklyarrow_forwardThe work done by spring is The work done by weight is Polar moment of inertia about B is angular velocity at position 2arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY