Concept explainers
A small rubber ball of radius r is thrown against a rough floor with a velocity
Fig. P17.131
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
<LCPO> VECTOR MECH,STAT+DYNAMICS
Additional Engineering Textbook Solutions
Fundamentals Of Thermodynamics
Fundamentals of Heat and Mass Transfer
Vector Mechanics for Engineers: Dynamics
DeGarmo's Materials and Processes in Manufacturing
Degarmo's Materials And Processes In Manufacturing
Statics and Mechanics of Materials (5th Edition)
- Two steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b = 111 mm. A horizontal force of magnitude F = 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = 0= IN P 77 M m/s² rad/s²arrow_forwardTwo steel balls, each of mass m = 1.84 kg, are welded to a light rod of length L = 545 mm and negligible mass and are initially at rest on a smooth horizontal surface. The distance b= 111 mm. A horizontal force of magnitude F= 27 N is suddenly applied to the rod as shown. Determine (a) the magnitude of the instantaneous acceleration a of the mass center G and (b) the magnitude of the corresponding rate 0 at which the angular velocity of the assembly about G is changing with time. m Answers: a = O = IN 7. 77 M m/s² rad/s²arrow_forwardThe work done by spring is The work done by weight is Polar moment of inertia about B is angular velocity at position 2arrow_forward
- A 1.6-kg tube AB can slide freely on rod DE which in turn can rotate freely in a horizontal plane. Initially the assembly is rotating with an angular velocity of magnitude w = 5 rad/s and the tube is held in position by a cord. The moment of inertia of the rod and bracket about the vertical axis of rotation is 0.30 kg.m2 and the centroidal moment of inertia of the tube about a vertical axis is 0.0025 kg.m2If the cord suddenly breaks, determine (a) the angular velocity of the assembly after the tube has moved to end E, (b) the energy lost during the plastic impact at E.arrow_forwardWhich of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A in N-s? 0.1350 0.1180 2.25 1.125arrow_forward17.81 A 1.8-kg collar A and a 0.7-kg collar B can slide without friction on a frame, consisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about its vertical axis of symmetry. The two collars are connected by a cord running over a pulley that is attached to the frame at O. At the instant shown, the velocity v of collar A has a magnitude of 2.1 m/s and a stop prevents collar B from moving. The stop is suddenly re- moved and collar A moves toward E. As it reaches a distance of 0.12 m from O, the magnitude of its velocity is observed to be 2.5 m/s. Determine at that instant the magnitude of the angular velocity of the frame and the moment of inertia of the frame and pulley system about CD. Fig. P17.81 01marrow_forward
- A large 3-lb sphere with a radius r = 3 in. is thrown into a light basket at the end of a thin, uniform rod weighing 2 lb and length L= 10 in. as shown. Immediately before the impact, the angular velocity of the rod is 3 rad/s counterclockwise and the velocity of the sphere is 2 ft/s down. Assume the sphere sticks in the basket. Determine after the impact (a) the angular velocity of the bar and sphere, (b) the components of the reactions at A.arrow_forwardTwo identical giant flywheels are on 2 identical slopes at an angle alpha = 20 deg. One flywheel is rolling on its inside shaft of diameter d1 = 3 ft, and the second flywheel is rolling without slipping on its outside diameter d2 = 5 ft. They are both released from rest. The weight of the flywheel is W = 8 lbs Knowing that flywheel 1 attains a speed of v = 7.0 ft/s in t = [t] s, (if t doesn't show take any t between 5 and 10 sec) find the radius of gyration of the flywheels, following those steps: b. Find omega final c. Find the angular impulse at the point of contact between the shaft and the slope. d. Write the formula to find the final momentum. e. Solve for k, using the principle of angular impulse and momentumarrow_forwardQ3. The double pulley shown in Fig Q3 has a mass of 14 kg and a centroidal radius of gyration of 165 mm. A and B are attached to cords that are wrapped around the pulley. µk = 0.25 between B and the surface. A friction moment exists in the axle of the pulley of 0.8 Nm. Knowing the system is released from rest, at the position shown, Using hand Calculations to determine, a) The velocity of A as it strikes the ground b) The total distance covered by B before it comes to rest. Using MATLAB to plot the variation of the velocity with the work done by the system. 250 mm 150 mm Not to scale m, = 9 kg B A m, = 11.5 kg 900 mm Fig. Q3arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY