Basic Technical Mathematics with Calculus (11th Edition)
11th Edition
ISBN: 9780134437736
Author: Allyn J. Washington, Richard Evans
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 17.2, Problem 52E
To determine
The range of possible voltage drop V across a resistor.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i need help please
A convex polygon is said to be regular if all of its sides have the same length and
all angles between sides are the same. Let Pr denote the regular convex n-sided
polygon. Thus, P3 is the equilateral triangle, P₁ is the square, P is the pentagon
etc. Compute a formula for the size of any internal angle of Pn.
+
Recall that a map, f: R2 R², is an isometry if |P-Q| = |ƒ(P) — ƒ (Q) for all
pairs of points P and Q in R². Thus, f is a distance preserving map. Show that
an isometry, f: R² → R² also preserves angles. In other words if two line segments
meeting at a point determine an angle a, their image line segments meeting at the
image of that point also determine the angle a.
Chapter 17 Solutions
Basic Technical Mathematics with Calculus (11th Edition)
Ch. 17.1 - For −6 < 3, determine the inequality if
1. 8 is...Ch. 17.1 - Prob. 2PECh. 17.1 - For the inequality −6 < 3, state the inequality...Ch. 17.1 - Prob. 4PECh. 17.1 - Prob. 5PECh. 17.1 - In Exercises 1–4, make the given changes in the...Ch. 17.1 - Prob. 2ECh. 17.1 - Prob. 3ECh. 17.1 - Prob. 4ECh. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...
Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 5–12, for the inequality 4 < 9, state...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - In Exercises 13–24, give the inequalities...Ch. 17.1 - Prob. 22ECh. 17.1 - Prob. 23ECh. 17.1 - Prob. 24ECh. 17.1 - Prob. 25ECh. 17.1 - Prob. 26ECh. 17.1 - Prob. 27ECh. 17.1 - Prob. 28ECh. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 29–44, graph the given inequalities...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 45–48, answer the given questions...Ch. 17.1 - In Exercises 49–52, solve the given problems.
49....Ch. 17.1 - In Exercises 49–52, solve the given problems.
50....Ch. 17.1 - In Exercises 49–52, solve the given...Ch. 17.1 - In Exercises 49–52, solve the given problems.
52....Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - In Exercises 53–62, some applications of...Ch. 17.1 - Prob. 62ECh. 17.2 - Prob. 1PECh. 17.2 - Prob. 2PECh. 17.2 - Prob. 3PECh. 17.2 - Prob. 4PECh. 17.2 - Prob. 1ECh. 17.2 - Prob. 2ECh. 17.2 - Prob. 3ECh. 17.2 - Prob. 4ECh. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - In Exercises 5–28, solve the given inequalities....Ch. 17.2 - Prob. 26ECh. 17.2 - Prob. 27ECh. 17.2 - Prob. 28ECh. 17.2 - Prob. 29ECh. 17.2 - Prob. 30ECh. 17.2 - Prob. 31ECh. 17.2 - Prob. 32ECh. 17.2 - Prob. 33ECh. 17.2 - Prob. 34ECh. 17.2 - Prob. 35ECh. 17.2 - Prob. 36ECh. 17.2 - Prob. 37ECh. 17.2 - Prob. 38ECh. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - Prob. 42ECh. 17.2 - Prob. 43ECh. 17.2 - Prob. 44ECh. 17.2 - Prob. 45ECh. 17.2 - Prob. 46ECh. 17.2 - Prob. 47ECh. 17.2 - Prob. 48ECh. 17.2 - In Exercises 39–60, solve the given problems by...Ch. 17.2 - Prob. 50ECh. 17.2 - Prob. 51ECh. 17.2 - Prob. 52ECh. 17.2 - Prob. 53ECh. 17.2 - Prob. 54ECh. 17.2 - Prob. 55ECh. 17.2 - Prob. 56ECh. 17.2 - Prob. 57ECh. 17.2 - Prob. 58ECh. 17.2 - Prob. 59ECh. 17.2 - Prob. 60ECh. 17.3 - Prob. 1PECh. 17.3 - Prob. 2PECh. 17.3 - Prob. 1ECh. 17.3 - Prob. 2ECh. 17.3 - Prob. 3ECh. 17.3 - Prob. 4ECh. 17.3 - Prob. 5ECh. 17.3 - Prob. 6ECh. 17.3 - Prob. 7ECh. 17.3 - Prob. 8ECh. 17.3 - Prob. 9ECh. 17.3 - Prob. 10ECh. 17.3 - Prob. 11ECh. 17.3 - Prob. 12ECh. 17.3 - Prob. 13ECh. 17.3 - Prob. 14ECh. 17.3 - Prob. 15ECh. 17.3 - Prob. 16ECh. 17.3 - Prob. 17ECh. 17.3 - Prob. 18ECh. 17.3 - Prob. 19ECh. 17.3 - Prob. 20ECh. 17.3 - Prob. 21ECh. 17.3 - Prob. 22ECh. 17.3 - Prob. 23ECh. 17.3 - Prob. 24ECh. 17.3 - Prob. 25ECh. 17.3 - Prob. 26ECh. 17.3 - Prob. 27ECh. 17.3 - Prob. 28ECh. 17.3 - Prob. 29ECh. 17.3 - Prob. 30ECh. 17.3 - Prob. 31ECh. 17.3 - Prob. 32ECh. 17.3 - Prob. 33ECh. 17.3 - Prob. 34ECh. 17.3 - Prob. 35ECh. 17.3 - Prob. 36ECh. 17.3 - Prob. 37ECh. 17.3 - Prob. 38ECh. 17.3 - Prob. 39ECh. 17.3 - Prob. 40ECh. 17.3 - Prob. 41ECh. 17.3 - Prob. 42ECh. 17.3 - Prob. 43ECh. 17.3 - Prob. 44ECh. 17.3 - Prob. 45ECh. 17.3 - Prob. 46ECh. 17.3 - Prob. 47ECh. 17.3 - Prob. 48ECh. 17.3 - Prob. 49ECh. 17.3 - Prob. 50ECh. 17.3 - Prob. 51ECh. 17.3 - Prob. 52ECh. 17.3 - Prob. 53ECh. 17.3 - Prob. 54ECh. 17.3 - Prob. 55ECh. 17.3 - Prob. 56ECh. 17.3 - In Exercises 51–62, answer the given questions by...Ch. 17.3 - Prob. 58ECh. 17.3 - Prob. 59ECh. 17.3 - Prob. 60ECh. 17.3 - Prob. 61ECh. 17.3 - Prob. 62ECh. 17.4 - Prob. 1PECh. 17.4 - Prob. 2PECh. 17.4 - Prob. 1ECh. 17.4 - Prob. 2ECh. 17.4 - Prob. 3ECh. 17.4 - Prob. 4ECh. 17.4 - Prob. 5ECh. 17.4 - Prob. 6ECh. 17.4 - Prob. 7ECh. 17.4 - Prob. 8ECh. 17.4 - Prob. 9ECh. 17.4 - Prob. 10ECh. 17.4 - Prob. 11ECh. 17.4 - Prob. 12ECh. 17.4 - Prob. 13ECh. 17.4 - Prob. 14ECh. 17.4 - Prob. 15ECh. 17.4 - Prob. 16ECh. 17.4 - Prob. 17ECh. 17.4 - Prob. 18ECh. 17.4 - Prob. 19ECh. 17.4 - Prob. 20ECh. 17.4 - Prob. 21ECh. 17.4 - Prob. 22ECh. 17.4 - Prob. 23ECh. 17.4 - Prob. 24ECh. 17.4 - Prob. 25ECh. 17.4 - Prob. 26ECh. 17.4 - Prob. 27ECh. 17.4 - Prob. 28ECh. 17.4 - Prob. 29ECh. 17.4 - Prob. 30ECh. 17.4 - Prob. 31ECh. 17.4 - Prob. 32ECh. 17.4 - Prob. 33ECh. 17.4 - Prob. 34ECh. 17.4 - Prob. 35ECh. 17.4 - Prob. 36ECh. 17.4 - Prob. 37ECh. 17.4 - Prob. 38ECh. 17.4 - Prob. 39ECh. 17.4 - Prob. 40ECh. 17.4 - Prob. 41ECh. 17.4 - Prob. 42ECh. 17.4 - Prob. 43ECh. 17.4 - Prob. 44ECh. 17.4 - Prob. 45ECh. 17.4 - Prob. 46ECh. 17.4 - Prob. 47ECh. 17.4 - Prob. 48ECh. 17.5 - Prob. 1PECh. 17.5 - Prob. 2PECh. 17.5 - Prob. 1ECh. 17.5 - Prob. 2ECh. 17.5 - Prob. 3ECh. 17.5 - Prob. 4ECh. 17.5 - Prob. 5ECh. 17.5 - Prob. 6ECh. 17.5 - Prob. 7ECh. 17.5 - Prob. 8ECh. 17.5 - Prob. 9ECh. 17.5 - Prob. 10ECh. 17.5 - Prob. 11ECh. 17.5 - Prob. 12ECh. 17.5 - Prob. 13ECh. 17.5 - Prob. 14ECh. 17.5 - Prob. 15ECh. 17.5 - Prob. 16ECh. 17.5 - Prob. 17ECh. 17.5 - Prob. 18ECh. 17.5 - Prob. 19ECh. 17.5 - Prob. 20ECh. 17.5 - Prob. 21ECh. 17.5 - Prob. 22ECh. 17.5 - Prob. 23ECh. 17.5 - Prob. 24ECh. 17.5 - Prob. 25ECh. 17.5 - Prob. 26ECh. 17.5 - Prob. 27ECh. 17.5 - Prob. 28ECh. 17.5 - Prob. 29ECh. 17.5 - Prob. 30ECh. 17.5 - Prob. 31ECh. 17.5 - Prob. 32ECh. 17.5 - Prob. 33ECh. 17.5 - Prob. 34ECh. 17.5 - Prob. 35ECh. 17.5 - Prob. 36ECh. 17.5 - Prob. 37ECh. 17.5 - Prob. 38ECh. 17.5 - Prob. 39ECh. 17.5 - Prob. 40ECh. 17.5 - Prob. 41ECh. 17.5 - Prob. 42ECh. 17.5 - Prob. 43ECh. 17.5 - Prob. 44ECh. 17.5 - Prob. 45ECh. 17.5 - Prob. 46ECh. 17.5 - Prob. 47ECh. 17.5 - Prob. 48ECh. 17.5 - Prob. 49ECh. 17.5 - Prob. 50ECh. 17.5 - Prob. 51ECh. 17.5 - Prob. 52ECh. 17.5 - Prob. 53ECh. 17.5 - Prob. 54ECh. 17.5 - Prob. 55ECh. 17.5 - Prob. 56ECh. 17.6 - Prob. 1PECh. 17.6 - Prob. 2PECh. 17.6 - Prob. 1ECh. 17.6 - Prob. 2ECh. 17.6 - Prob. 3ECh. 17.6 - Prob. 4ECh. 17.6 - Prob. 5ECh. 17.6 - Prob. 6ECh. 17.6 - Prob. 7ECh. 17.6 - Prob. 8ECh. 17.6 - Prob. 9ECh. 17.6 - Prob. 10ECh. 17.6 - Prob. 11ECh. 17.6 - Prob. 12ECh. 17.6 - Prob. 13ECh. 17.6 - Prob. 14ECh. 17.6 - Prob. 15ECh. 17.6 - Prob. 16ECh. 17.6 - Prob. 17ECh. 17.6 - Prob. 18ECh. 17.6 - Prob. 19ECh. 17.6 - In Exercises 17–22, solve the given linear...Ch. 17.6 - Prob. 21ECh. 17.6 - Prob. 22ECh. 17 - Prob. 1RECh. 17 - Prob. 2RECh. 17 - Prob. 3RECh. 17 - Prob. 4RECh. 17 - Prob. 5RECh. 17 - Prob. 6RECh. 17 - Prob. 7RECh. 17 - Prob. 8RECh. 17 - Prob. 9RECh. 17 - Prob. 10RECh. 17 - Prob. 11RECh. 17 - Prob. 12RECh. 17 - Prob. 13RECh. 17 - Prob. 14RECh. 17 - Prob. 15RECh. 17 - Prob. 16RECh. 17 - Prob. 17RECh. 17 - Prob. 18RECh. 17 - Prob. 19RECh. 17 - Prob. 20RECh. 17 - Prob. 21RECh. 17 - Prob. 22RECh. 17 - Prob. 23RECh. 17 - Prob. 24RECh. 17 - Prob. 25RECh. 17 - Prob. 26RECh. 17 - Prob. 27RECh. 17 - Prob. 28RECh. 17 - Prob. 29RECh. 17 - Prob. 30RECh. 17 - Prob. 31RECh. 17 - Prob. 32RECh. 17 - Prob. 33RECh. 17 - Prob. 34RECh. 17 - Prob. 35RECh. 17 - Prob. 36RECh. 17 - Prob. 37RECh. 17 - Prob. 38RECh. 17 - Prob. 39RECh. 17 - Prob. 40RECh. 17 - Prob. 41RECh. 17 - Prob. 42RECh. 17 - Prob. 43RECh. 17 - Prob. 44RECh. 17 - Prob. 45RECh. 17 - Prob. 46RECh. 17 - Prob. 47RECh. 17 - Prob. 48RECh. 17 - Prob. 49RECh. 17 - Prob. 50RECh. 17 - Prob. 51RECh. 17 - Prob. 52RECh. 17 - Prob. 53RECh. 17 - Prob. 54RECh. 17 - Prob. 55RECh. 17 - Prob. 56RECh. 17 - Prob. 57RECh. 17 - Prob. 58RECh. 17 - Prob. 59RECh. 17 - Prob. 60RECh. 17 - Prob. 61RECh. 17 - Prob. 62RECh. 17 - Prob. 63RECh. 17 - Prob. 64RECh. 17 - Prob. 65RECh. 17 - Prob. 66RECh. 17 - Prob. 67RECh. 17 - Prob. 68RECh. 17 - Prob. 69RECh. 17 - Prob. 70RECh. 17 - Prob. 71RECh. 17 - Prob. 72RECh. 17 - Prob. 73RECh. 17 - Prob. 74RECh. 17 - Prob. 75RECh. 17 - Prob. 76RECh. 17 - Prob. 77RECh. 17 - Prob. 78RECh. 17 - Prob. 79RECh. 17 - Prob. 80RECh. 17 - Prob. 81RECh. 17 - Prob. 82RECh. 17 - Prob. 83RECh. 17 - Prob. 84RECh. 17 - Prob. 85RECh. 17 - Prob. 86RECh. 17 - Prob. 87RECh. 17 - Prob. 88RECh. 17 - Prob. 89RECh. 17 - Prob. 90RECh. 17 - Prob. 91RECh. 17 - Prob. 1PTCh. 17 - Prob. 2PTCh. 17 - Prob. 3PTCh. 17 - Prob. 4PTCh. 17 - Prob. 5PTCh. 17 - Prob. 6PTCh. 17 - Prob. 7PTCh. 17 - Prob. 8PTCh. 17 - Prob. 9PTCh. 17 - Prob. 10PTCh. 17 - Prob. 11PTCh. 17 - Prob. 12PTCh. 17 - Prob. 13PTCh. 17 - Prob. 14PT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Using Harriott's formula for the area of a triangle on the unit sphere, S2, compute the Euler characteristic X(S2). Make sure to explain what the Euler characteristic is. (The point of the exercise is to show that this notion is well-defined.)arrow_forwardProve Harriot's Formula (Area of a Triangle on a Sphere).arrow_forward6. (i) Sketch the trace of the following curve on R², (t) = (sin(t), 3 sin(t)), tЄ [0, π]. [3 Marks] Total marks 10 (ii) Find the length of this curve. [7 Marks]arrow_forward
- helppparrow_forward7. Let F(x1, x2) (F₁(x1, x2), F2(x1, x2)), where = X2 F1(x1, x2) X1 F2(x1, x2) x+x (i) Using the definition, calculate the integral LF.dy, where (t) = (cos(t), sin(t)) and t = [0,2]. [5 Marks] (ii) Explain why Green's Theorem cannot be used to find the integral in part (i). [5 Marks]arrow_forward6. Sketch the trace of the following curve on R², п 3п (t) = (t2 sin(t), t2 cos(t)), tЄ 22 [3 Marks] Find the length of this curve. [7 Marks]arrow_forward
- Total marks 10 Total marks on naner: 80 7. Let DCR2 be a bounded domain with the boundary OD which can be represented as a smooth closed curve : [a, b] R2, oriented in the anticlock- wise direction. Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = ½ (−y, x) · dy. [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse y(t) = (10 cos(t), 5 sin(t)), t = [0,2π]. [5 Marks]arrow_forwardTotal marks 15 Total marks on paper: 80 6. Let DCR2 be a bounded domain with the boundary ǝD which can be represented as a smooth closed curve : [a, b] → R², oriented in the anticlockwise direction. (i) Use Green's Theorem to justify that the area of the domain D can be computed by the formula 1 Area(D) = . [5 Marks] (ii) Use the area formula in (i) to find the area of the domain D enclosed by the ellipse (t) = (5 cos(t), 10 sin(t)), t = [0,2π]. [5 Marks] (iii) Explain in your own words why Green's Theorem can not be applied to the vector field У x F(x,y) = ( - x² + y²²x² + y² ). [5 Marks]arrow_forwardTotal marks 15 པ་ (i) Sketch the trace of the following curve on R2, (t) = (t2 cos(t), t² sin(t)), t = [0,2π]. [3 Marks] (ii) Find the length of this curve. (iii) [7 Marks] Give a parametric representation of a curve : [0, that has initial point (1,0), final point (0, 1) and the length √2. → R² [5 Marks] Turn over. MA-201: Page 4 of 5arrow_forward
- Total marks 15 5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly your answer. [5 Marks] 6. (i) Sketch the trace of the following curve on R2, y(t) = (sin(t), 3 sin(t)), t = [0,π]. [3 Marks]arrow_forwardIn rhombus ABCD, diagonals BD¯¯¯¯¯¯BD¯ and AC¯¯¯¯¯AC¯ intersect at point E. If BE = 4n – 3 and EC = 2n + 5, which expression can be used to represent AD?arrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY