Concept explainers
Consider the waves in Figure 17.8 to be waves on a stretched string. Define the velocity of elements of the string as positive if they are moving upward in the figure. (i) At the moment the string has the shape shown by the red-brown curve in Figure 17.8a, what is the instantaneous velocity of elements along the string? (a) zero for all elements (b) positive for all elements (c) negative for all elements (d) varies with the position of the element (ii) From the same choices, at the moment the string has the shape shown by the red-brown curve in Figure 17.8b, what is the instantaneous velocity of elements along the string?
Trending nowThis is a popular solution!
Chapter 17 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- A copper wire has a density of =8920 kg/m3, a radius of 1.20 mm, and a length L. The wire is held under a tension of 10.00 N. Transverse waves are sent down the wire. (a) What is the linear mass density of the wire? (b) What is the speed of the waves through the wire?arrow_forwardA dolphin (Fig. P17.7) in seawater at a temperature of 25C emits a sound wave directed toward the ocean floor 150 m below. How much time passes before it hears an echo?arrow_forwardTwo sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forward
- Equation 16.40 states that at distance r away from a point source with power (Power)avg, the wave intensity is I=(Power)avg4r2 Study Figure 16.25 and prove that at distance r straight in front of a point source with power (Power)avg moving with constant speed vS the wave intensity is I=(Power)avg4r2(vvSv)arrow_forwardA string on the violin has a length of 24.00 cm and a mass of 0.860 g. The fundamental frequency of the string is 1.00 kHz. (a) What is the speed of the wave on the string? (b) What is the tension in the string?arrow_forwardConsider a wave described by the wave function y(x,t)=0.3msin(2.00m1x628.00s1t) . (a) How many crests pass by an observer at a fixed location in 2.00 minutes? (b) How far has the wave traveled in that time?arrow_forward
- A string on the violin has a length of 23.00 cm and a mass of 0.900 grams. The tension in the string 850.00 N. The temperature in the room is TC=24.00C . The string is plucked and oscillates in the n=9 mode. (a) What is the speed of the wave on the string? (b) What is the wavelength of the sounding wave produced? (c) What is the frequency of the oscillating string? (d) What is the frequency of the sound produced? (e) What is the wavelength of the sound produced?arrow_forwardA block of mass m = 5.00 kg is suspended from a wire that passes over a pulley and is attached to a wall (Fig. P17.71). Traveling waves are observed to have a speed of 33.0 m/s on the wire. a. What is the mass per unit length of the wire? b. What would the speed of waves on the wire be if the suspended mass were decreased to 2.50 kg? FIGURE P17.71arrow_forwardThe displacement of the air molecules in sound wave is modeled with the wave function s(x,t)=5.00nmcos(91.54m1x3.14104s1t) . (a) What is the wave speed of the sound wave? (b) What is the maximum speed of the air molecules as they oscillate in simple harmonic motion? (c) What is the magnitude of the maximum acceleration of the air molecules as they oscillate in simple harmonic motion?arrow_forward
- Tripling both the tension in a guitar string and its mass per unit length will result in changing the wave speed in the string by what factor? O 3.00 O 1.00 (i.e., no change) O 0.58 O 1.73arrow_forward68 I 5:03 docs.google.com/forms 2 A traveling wave on a taut string with a tension force T is given by the wave function: y(x,t) = 0.1sin(2rtx-300t), where x and y are in meters and t is in seconds. The linear mass density of the string is µ = 100 g/m, and the string is 10 m-long. The total energy on the string is 45 J 225 J 22.5 J 90 J 450 J The wavefunction of a mechanical wave on a string is described by: 9 y(x,t) = 0.012cos(Tx-100rtt+2rt/3), where x and y are in meters and t is inarrow_forwardI need help with d and earrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning