Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
10th Edition
ISBN: 9781337888585
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 18P
To determine
The new fundamental frequency.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A solid copper object hangs at the bottom of a steel wire of negligible mass. The top end of the wire is fixed. When the wire is struck, it emits sound with a fundamental frequency of 300 Hz. The copper object is then submergedin water so that half its volume is below the water line. Determine the new fundamental frequency.
DETAILS
SERPSE10 17.4.P.018.
A solid copper object hangs at the bottom of a steel wire of negligible mass.
the water line. Determine the new fundamental frequency.
Hz
Submit Answer
ASK YOUR TEACHER
is fixed. When the wire is struck, it emits a sound with a fundamental frequency of 746 Hz. The copper object is then submerged in water so that half its volume is below
estion 9 of 19
View Next Question
Suppose fluid B has 4.6 times the bulk modulus
and 1.2 times the density of fluid A. Find the ratio
of the speed of sound in fluid B over the speed of
sound in fluid A.
Chapter 17 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
Ch. 17.1 - Prob. 17.1QQCh. 17.2 - Consider the waves in Figure 17.8 to be waves on a...Ch. 17.4 - When a standing wave is set up on a string fixed...Ch. 17.6 - Prob. 17.4QQCh. 17.6 - Prob. 17.5QQCh. 17 - Two waves on one string are described by the wave...Ch. 17 - Two pulses of different amplitudes approach each...Ch. 17 - Two wave pulses A and B are moving in opposite...Ch. 17 - Why is the following situation impossible? Two...Ch. 17 - Two pulses traveling on the same string are...
Ch. 17 - Two identical loudspeakers 10.0 m apart are driven...Ch. 17 - Two sinusoidal waves on a string are defined by...Ch. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - A string that is 30.0 cm long and has a mass per...Ch. 17 - Prob. 14PCh. 17 - Review. A sphere of mass M = 1.00 kg is supported...Ch. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The fundamental frequency of an open organ pipe...Ch. 17 - Ever since seeing Figure 16.22 in the previous...Ch. 17 - An air column in a glass tube is open at one end...Ch. 17 - Prob. 24PCh. 17 - Prob. 25PCh. 17 - Prob. 26PCh. 17 - As shown in Figure P17.27, water is pumped into a...Ch. 17 - As shown in Figure P17.27, water is pumped into a...Ch. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - Prob. 34APCh. 17 - Prob. 35APCh. 17 - A 2.00-m-long wire having a mass of 0.100 kg is...Ch. 17 - Prob. 37APCh. 17 - Prob. 38APCh. 17 - Prob. 39APCh. 17 - Review. For the arrangement shown in Figure...Ch. 17 - Prob. 41APCh. 17 - Two speakers are driven by the same oscillator of...Ch. 17 - Prob. 43APCh. 17 - Prob. 44APCh. 17 - Prob. 45APCh. 17 - Prob. 46APCh. 17 - Review. A 12.0-kg object hangs in equilibrium from...Ch. 17 - Review. An object of mass m hangs in equilibrium...Ch. 17 - Prob. 49APCh. 17 - Prob. 50CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In about 1657, Otto von Guericke, inventor of the air pump, evacuated a sphere made of two brass hemispheres (Fig. P15.62). Two teams of eight horses each could pull the hemispheres apart only on some trials and then with greatest difficulty, with the resulting sound likened to a cannon firing. Find the force F required to pull the thin-walled evacuated hemispheres apart in terms of R, the radius of the hemispheres; P, the pressure inside the hemispheres; and atmospheric pressure P0. Figure P15.62arrow_forwardRasim and Zhihan are experimenting to determine the speed of sound in m/s in air at 0°C. Assuming air to be made up of diatomic molecules with a molecular mass of 29 g/mol, what is the correct value they should expect for the speed of sound in m/s?arrow_forwardA copper block is suspended from a wire, as in part 1 of the drawing. A container of mercury is then raised up around the block, as in part 2, so that 45.0% of the block’s volume is submerged in the mercury. The density of copper is 8890 kg/m3, and that of mercury is 13 600 kg/m3. Find the ratio of the fundamental frequency of the wire in part 2 to the fundamental frequency in part 1.arrow_forward
- In an undisturbed airstream, where the pressure is 14.7 lb/in² and the density is 0.002377 slugs/ft³, the velocity is 500 ft/s. Where the velocity is 590 ft/s, what are the density, temperature, speed of sound and specific weight? 0.087 lb/ft² 0.002003 slugs/ft³ 0.002112 slugs/ft³ 0.071 lb/ft² 0.073 lb/ft² 0.074 lb/ft² 0.002322 slugs/ft³ 1022.56 ft/s 510.87 R 1000.32 ft/s 520.33 R 1112.44 ft/s 530.21 R 1107.47 ft/s 500.59 R 0.002285 slugs/ft³arrow_forwardYou are part of a scientific expedition that landed in the planet Martech. The planet has an atmosphere of an unknown gas. In your preparation for the mission you prepared the following table, a resonance tube and a sonic device that can produce three frequencies: 261HZ, 330HZ and 512HZ. Temperature (°c Speed (m/sec) Substance CO2 258 CO2 20 267 Air 331.5 Air 20 344 Water Vapor Helium Hydrogen 20 395 20 927 1,270 Argon 20 300 Delakium 20 2950 You measured the temperature of the gas in the atmosphere and recorded 20 degree Celsius. Remembering the valuable learning experience you had in your class Science and Technology in the Arts, you need to determine the gas of the atmosphere on the planet Martech. When rushing to implement the experiment, you used the sonic device to produce the three frequencies above the resonance tube, but recorded only the length of the resonance tube that produced the first maximum intensity for each one of them without recording the frequency of the sonic…arrow_forwardA sound wave has a frequency of 632 Hz in air and a wavelength of 0.51 m. What is the temperature of the air? Assume the velocity of sound at 0°C is 331 m/s. Answer in units of °C.arrow_forward
- A copper block is suspended from a wire, as in part 1 of the drawing. A container of mercury is then raised up around the block, as in part 2, so that 42.0% of the block's volume is submerged in the mercury. The density of copper is 8890 kg/m³, and that of mercury is 13 600 kg/m³. Find the ratio of the fundamental frequency of the wire in part 2 to the fundamental frequency in part 1. f1,Part 2/f1. Part 1 Number i = Copper block Part 1 Units I M Part 2arrow_forwardA sound wave arriving at your ear is transferred to the fluid in the cochlea. If the intensity in the fluid is 0.410 times that in air and the frequency is the same as for the wave in air, what will be the ratio of the pressure amplitude of the wave in air to that in the fluid? Approximate the fluid as having the same values of density and speed of sound as water. Speed of sound in dry air (20.0°C, 1.00 atm) is 343 m/s, density of dry air (at STP) is 1.29 kg/m3, density of water is 1000 kg/m3, and speed of sound in water is 1493 m/s.arrow_forwardA sound wave arriving at your ear is transferred to the fluid in the cochlea. If the intensity in the fluid is 0.430 times that in air and the frequency is the same as for the wave in air, what will be the ratio of the pressure amplitude of the wave in air to that in the fluid? Approximate the fluid as having the same values of density and speed of sound as water. Speed of sound in dry air (20.0°C, 1.00 atm) is 343 m/s, density of dry air (at STP) is 1.29 kg/m3, density of water is 1000 kg/m3, and speed of sound in water is 1493 m/s. Numeric Response: ______arrow_forward
- A cylinder completely filled with an unknown liquid has a radius of 1.50 cm, a length of 64.0 cm, and a mass of 357 g. An engineer performs an experiment to measure the speed of sound in the liquid. A small speaker emits a sound pulse at one end of the cylinder, which travels through the liquid and is detected by a microphone attached at the other end. The elapsed time between emission of the sound pulse and its detection by the microphone is measured by an electronic circuit to be 5.90 x 10-4 s. What the bulk modulus (in Pa) of the liquid in the cylinder? 3714 x What is the speed of sound in the material? How is it related to the bulk modulus and density of the material? What is the volume of a cylinder? Be careful with units in your calculations. Pa Need Help? Read It Submit Answerarrow_forwardPlease asaparrow_forwardAt what temperature is the speed of sound in helium (ideal gas, = 1.67, atomic mass = 4.003 u) the same as its speed in oxygen gas at 5.40 oC? The speed of sound in oxygen at 5.40°C is 318 m/s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY