
Differential Equations (with DE Tools Printed Access Card)
4th Edition
ISBN: 9781133109037
Author: Paul Blanchard
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 1.7, Problem 9E
To determine
To calculate: To determine the bifurcation value for
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Definition: A topology on a set X is a collection T of subsets of X having the following
properties.
(1) Both the empty set and X itself are elements of T.
(2) The union of an arbitrary collection of elements of T is an element of T.
(3) The intersection of a finite number of elements of T is an element of T.
A set X with a specified topology T is called a topological space. The subsets of X that are
members of are called the open sets of the topological space.
Definition: A topology on a set X is a collection T of subsets of X having the following
properties.
(1) Both the empty set and X itself are elements of T.
(2) The union of an arbitrary collection of elements of T is an element of T.
(3) The intersection of a finite number of elements of T is an element of T.
A set X with a specified topology T is called a topological space. The subsets of X that are
members of are called the open sets of the topological space.
3) Let a1, a2, and a3 be arbitrary real numbers, and define
an = 3an 13an-2 + An−3
for all integers n ≥ 4. Prove that
an
=
1
-
-
-
-
-
1
-
-
(n − 1)(n − 2)a3 − (n − 1)(n − 3)a2 + = (n − 2)(n − 3)aı
for all integers n > 1.
Chapter 1 Solutions
Differential Equations (with DE Tools Printed Access Card)
Ch. 1.1 - In Exercises 1 and 2, find the equilibrium...Ch. 1.1 - In Exercises 1 and 2, find the equilibrium...Ch. 1.1 - Consider the population model dPdt=0.4P(1P230)...Ch. 1.1 - Consider the population model ...Ch. 1.1 - Consider the differential equation dydt=y3y212y...Ch. 1.1 - In Exercises 6—10, we consider the phenomenon of...Ch. 1.1 - In Exercises 6—10, we consider the phenomenon of...Ch. 1.1 - In Exercises 6—10, we consider the phenomenon of...Ch. 1.1 - In Exercises 6—10, we consider the phenomenon of...Ch. 1.1 - In Exercises 6—10, we consider the phenomenon of...
Ch. 1.1 - MacQuarie Island is a small island about half-way...Ch. 1.1 - The velocity u of a freefalling skydiver is well...Ch. 1.1 - Exercises 13—15 consider an elementary model of...Ch. 1.1 - Exercises 13—15 consider an elementary model of...Ch. 1.1 - Exercises 13—15 consider an elementary model of...Ch. 1.1 - The expenditure on education in the U.S. is given...Ch. 1.1 - Suppose a species of fish in a particular lake has...Ch. 1.1 - Suppose that the growth-rate parameter k = 0.3 and...Ch. 1.1 - The rhinoceros is now extremely rare. Suppose...Ch. 1.1 - While it is difficult to imagine a time before...Ch. 1.1 - For the following predator-prey systems, identify...Ch. 1.1 - In the following predator-prey population models,x...Ch. 1.1 - The following systems are models of the...Ch. 1.2 - Bob. Glen. and Paul are once again sitting around...Ch. 1.2 - Make up a differential equation of the form ...Ch. 1.2 - Make up a differential equation of the form dy/dt...Ch. 1.2 - In Section 1.1, we guessed solutions to the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 524, find the general solution of the...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - Prob. 32ECh. 1.2 - Prob. 33ECh. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - In Exercises 2538, solve the given initial-value...Ch. 1.2 - Prob. 38ECh. 1.2 - A 5-gallon bucket is full of pure water. Suppose...Ch. 1.2 - Consider the following very simple model of blood...Ch. 1.2 - A cup of hot chocolate is initially 170o Fand is...Ch. 1.2 - Suppose you are having a dinner party for a large...Ch. 1.2 - Prob. 43ECh. 1.3 - In Exercises 1-6, sketch the slope fields for the...Ch. 1.3 - Prob. 2ECh. 1.3 - Prob. 3ECh. 1.3 - Prob. 4ECh. 1.3 - Prob. 5ECh. 1.3 - Prob. 6ECh. 1.3 - In Exercises 710, a differential equation and its...Ch. 1.3 - Prob. 8ECh. 1.3 - Prob. 9ECh. 1.3 - Prob. 10ECh. 1.3 - Suppose we know that the function f(t, y) is...Ch. 1.3 - Prob. 12ECh. 1.3 - Prob. 13ECh. 1.3 - Prob. 14ECh. 1.3 - Consider the autonomous differential equation ...Ch. 1.3 - Eight differential equations and four slope fields...Ch. 1.3 - Prob. 17ECh. 1.3 - Prob. 18ECh. 1.3 - Prob. 19ECh. 1.3 - Prob. 20ECh. 1.3 - Prob. 21ECh. 1.3 - Prob. 22ECh. 1.4 - In Exercises 14, use EulersMethod to perform...Ch. 1.4 - In Exercises 14, use EulersMethod to perform...Ch. 1.4 - Prob. 3ECh. 1.4 - In Exercises 14, use EulersMethod to perform...Ch. 1.4 - In Exercises 510, use Euler’s method with the...Ch. 1.4 - In Exercises 510, use Euler’s method with the...Ch. 1.4 - Prob. 7ECh. 1.4 - Prob. 8ECh. 1.4 - Prob. 9ECh. 1.4 - Prob. 10ECh. 1.4 - Prob. 11ECh. 1.4 - Prob. 12ECh. 1.4 - Prob. 13ECh. 1.4 - Prob. 14ECh. 1.4 - Consider the initial-value problem dy/dt= y ,y(0)...Ch. 1.4 - Consider the initial-value problem dy/dt= 2 ...Ch. 1.4 - As we saw in Exercise 19 of Section 1.3, the...Ch. 1.4 - Prob. 18ECh. 1.4 - Prob. 19ECh. 1.4 - Prob. 20ECh. 1.4 - Prob. 21ECh. 1.5 - In Exercises 1—4, we refer to a function f, but we...Ch. 1.5 - Prob. 2ECh. 1.5 - In Exercises 1—4, we refer to a function f, but we...Ch. 1.5 - In Exercises 1—4, we refer to a function f, but we...Ch. 1.5 - Prob. 5ECh. 1.5 - In Exercises 5—8, an initial condition for the...Ch. 1.5 - Prob. 7ECh. 1.5 - In Exercises 5—8, an initial condition for the...Ch. 1.5 - (a) Show that y1(t)=t2 and y2(t)=t2+1 are...Ch. 1.5 - Consider the differential equation dy/dt=2y (a)...Ch. 1.5 - Consider the differential equation dydt=yt2 (a)...Ch. 1.5 - (a) Show that y1(t)=1t1 and y2(t)=1t2 are...Ch. 1.5 - Prob. 13ECh. 1.5 - In Exercises 13—16, an initial-value problem is...Ch. 1.5 - In Exercises 13—16, an initial-value problem is...Ch. 1.5 - In Exercises 13—16, an initial-value problem is...Ch. 1.5 - Prob. 17ECh. 1.5 - We have emphasized that the Uniqueness Theorem...Ch. 1.6 - In Exercises 112, sketch the phase lines for the...Ch. 1.6 - In Exercises 112, sketch the phase lines for the...Ch. 1.6 - Prob. 3ECh. 1.6 - In Exercises 112, sketch the phase lines for the...Ch. 1.6 - Prob. 5ECh. 1.6 - In Exercises 112, sketch the phase lines for the...Ch. 1.6 - In Exercises 112, sketch the phase lines for the...Ch. 1.6 - In Exercises 112, sketch the phase lines for the...Ch. 1.6 - Prob. 9ECh. 1.6 - In Exercises 112, sketch the phase lines for the...Ch. 1.6 - Prob. 11ECh. 1.6 - Prob. 12ECh. 1.6 - In Exercises 1321, a differential equation and...Ch. 1.6 - In Exercises 1321, a differential equation and...Ch. 1.6 - In Exercises 1321, a differential equation and...Ch. 1.6 - Prob. 16ECh. 1.6 - ]In Exercises 1321, a differential equation and...Ch. 1.6 - Prob. 18ECh. 1.6 - In Exercises 1321, a differential equation and...Ch. 1.6 - Prob. 20ECh. 1.6 - Prob. 21ECh. 1.6 - In Exercises 2227, describe the long-term behavior...Ch. 1.6 - Prob. 23ECh. 1.6 - In Exercises 2227, describe the long-term behavior...Ch. 1.6 - In Exercises 2227, describe the long-term behavior...Ch. 1.6 - In Exercises 2227, describe the long-term behavior...Ch. 1.6 - Prob. 27ECh. 1.6 - Prob. 28ECh. 1.6 - Prob. 29ECh. 1.6 - In Exercises 2932, the graph of a function f(y) is...Ch. 1.6 - In Exercises 2932, the graph of a function f(y) is...Ch. 1.6 - In Exercises 2932, the graph of a function f(y) is...Ch. 1.6 - Prob. 33ECh. 1.6 - Prob. 34ECh. 1.6 - Prob. 35ECh. 1.6 - Prob. 36ECh. 1.6 - Eight differential equations and four phase lines...Ch. 1.6 - Prob. 38ECh. 1.6 - Prob. 39ECh. 1.6 - Consider the Ermentrout-Kopell model for the...Ch. 1.6 - Prob. 41ECh. 1.6 - Prob. 42ECh. 1.6 - Prob. 43ECh. 1.6 - Prob. 44ECh. 1.6 - Let x(t) be the amount of time between two...Ch. 1.6 - Prob. 46ECh. 1.6 - Use the model in Exercise 45 to predict what...Ch. 1.6 - Prob. 48ECh. 1.7 - In Exercises 1-6, locate the bifurcation values...Ch. 1.7 - In Exercises 1-6, locate the bifurcation values...Ch. 1.7 - In Exercises 1-6, locate the bifurcation values...Ch. 1.7 - In Exercises 1-6, locate the bifurcation values...Ch. 1.7 - In Exercises 1-6, locate the bifurcation values...Ch. 1.7 - Prob. 6ECh. 1.7 - Prob. 7ECh. 1.7 - Prob. 8ECh. 1.7 - Prob. 9ECh. 1.7 - Prob. 10ECh. 1.7 - The graph to the right is the graph of a function...Ch. 1.7 - The graph to the right is the graph of a function...Ch. 1.7 - Six one-parameter families of different equations...Ch. 1.7 - Consider the Ermentrout-Kopell model for the...Ch. 1.7 - Prob. 15ECh. 1.7 - Sketch the graph of a function g(y) such that the...Ch. 1.7 - Is it possible to find a continuous function...Ch. 1.7 - Prob. 18ECh. 1.7 - Consider the population model dPdt=2PP250 for a...Ch. 1.7 - Prob. 20ECh. 1.7 - Prob. 21ECh. 1.7 - Prob. 22ECh. 1.7 - Prob. 23ECh. 1.8 - In Exercises 1-6, find the general solution of the...Ch. 1.8 - Prob. 2ECh. 1.8 - In Exercises 1-6, find the general solution of the...Ch. 1.8 - Prob. 4ECh. 1.8 - In Exercises 1-6, find the general solution of the...Ch. 1.8 - In Exercises 1-6, find the general solution of the...Ch. 1.8 - In Exercises 7-12, solve the given initial-value...Ch. 1.8 - In Exercises 7-12, solve the given initial-value...Ch. 1.8 - In Exercises 7-12, solve the given initial-value...Ch. 1.8 - In Exercises 7-12, solve the given initial-value...Ch. 1.8 - In Exercises 7-12, solve the given initial-value...Ch. 1.8 - In Exercises 7-12, solve the given initial-value...Ch. 1.8 - Consider the nonhomogeneous linear equation...Ch. 1.8 - Prob. 14ECh. 1.8 - Prob. 15ECh. 1.8 - Prob. 16ECh. 1.8 - Consider the nonlinear differential equation...Ch. 1.8 - Prob. 18ECh. 1.8 - Prob. 19ECh. 1.8 - Consider the nonhomogeneous linear equation...Ch. 1.8 - In Exercises 21-24, find the general solution and...Ch. 1.8 - In Exercises 21-24, find the general solution and...Ch. 1.8 - In Exercises 21-24, find the general solution and...Ch. 1.8 - In Exercises 21-24, find the general solution and...Ch. 1.8 - Prob. 25ECh. 1.8 - Prob. 26ECh. 1.8 - In Exercises 25-28, give a brief qualitative...Ch. 1.8 - Prob. 28ECh. 1.8 - A person initially places $1,000 in a savings...Ch. 1.8 - A student has saved $70,000 for her college...Ch. 1.8 - A college professor contributes $5,000 per year...Ch. 1.8 - Prob. 32ECh. 1.8 - Prob. 33ECh. 1.8 - Prob. 34ECh. 1.9 - In Exercises 1-6, find the general solution of the...Ch. 1.9 - In Exercises 1-6, find the general solution of the...Ch. 1.9 - In Exercises 1-6, find the general solution of the...Ch. 1.9 - In Exercises 1-6, find the general solution of the...Ch. 1.9 - In Exercises 1-6, find the general solution of the...Ch. 1.9 - In Exercises 1-6, find the general solution of the...Ch. 1.9 - In Exercises 7-12, solve the given initial-value...Ch. 1.9 - In Exercises 7-12, solve the given initial-value...Ch. 1.9 - Prob. 9ECh. 1.9 - Prob. 10ECh. 1.9 - Prob. 11ECh. 1.9 - In Exercises 7-12, solve the given initial-value...Ch. 1.9 - In Exercises 13-18, the differential equation is...Ch. 1.9 - Prob. 14ECh. 1.9 - Prob. 15ECh. 1.9 - Prob. 16ECh. 1.9 - Prob. 17ECh. 1.9 - Prob. 18ECh. 1.9 - Prob. 19ECh. 1.9 - Prob. 20ECh. 1.9 - Prob. 21ECh. 1.9 - Prob. 22ECh. 1.9 - Prob. 23ECh. 1.9 - A 30-gallon tank initially contains 15 gallons of...Ch. 1.9 - A 400-gallon tank initially contains 200 gallons...Ch. 1.9 - A 100-gallon tank initially contains loo gallons...Ch. 1.9 - Suppose a 50-gallon tank contains a volume Vo of...Ch. 1 - Short answer exercises: Exercises 1-10 focus on...Ch. 1 - Short answer exercises: Exercises 1-10 focus on...Ch. 1 - Short answer exercises: Exercises 1-10 focus on...Ch. 1 - Prob. 4RECh. 1 - Short answer exercises: Exercises 1-10 focus on...Ch. 1 - Short answer exercises: Exercises 1-10 focus on...Ch. 1 - Prob. 7RECh. 1 - Prob. 8RECh. 1 - Prob. 9RECh. 1 - Prob. 10RECh. 1 - Prob. 11RECh. 1 - Prob. 12RECh. 1 - Prob. 13RECh. 1 - Prob. 14RECh. 1 - True-false: For Exercises 11-20, determine if the...Ch. 1 - Prob. 16RECh. 1 - True-false: For Exercises 11-20, determine if the...Ch. 1 - Prob. 18RECh. 1 - Prob. 19RECh. 1 - Prob. 20RECh. 1 - Prob. 21RECh. 1 - Prob. 22RECh. 1 - Prob. 23RECh. 1 - Prob. 24RECh. 1 - Prob. 25RECh. 1 - Prob. 26RECh. 1 - Prob. 27RECh. 1 - Prob. 28RECh. 1 - In Exercises 21-29, (a) specify if the given...Ch. 1 - Prob. 30RECh. 1 - Prob. 31RECh. 1 - Prob. 32RECh. 1 - Prob. 33RECh. 1 - Prob. 34RECh. 1 - In Exercises 30-39, (a) specify if the given...Ch. 1 - Prob. 36RECh. 1 - Prob. 37RECh. 1 - Prob. 38RECh. 1 - Prob. 39RECh. 1 - Prob. 40RECh. 1 - Prob. 41RECh. 1 - Consider the autonomous differential equation...Ch. 1 - Prob. 43RECh. 1 - Prob. 44RECh. 1 - Prob. 45RECh. 1 - Prob. 46RECh. 1 - Prob. 47RECh. 1 - Prob. 48RECh. 1 - Eight differential equations and four slope fields...Ch. 1 - Prob. 50RECh. 1 - Prob. 51RECh. 1 - Consider the differential equation dy/dt=2ty2 ....Ch. 1 - Prob. 53RECh. 1 - A 1000-galIon tank initially contains a mixture of...
Knowledge Booster
Similar questions
- Definition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forwardDefinition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forwardDefinition: A topology on a set X is a collection T of subsets of X having the following properties. (1) Both the empty set and X itself are elements of T. (2) The union of an arbitrary collection of elements of T is an element of T. (3) The intersection of a finite number of elements of T is an element of T. A set X with a specified topology T is called a topological space. The subsets of X that are members of are called the open sets of the topological space.arrow_forward
- u, v and w are three coplanar vectors: ⚫ w has a magnitude of 10 and points along the positive x-axis ⚫ v has a magnitude of 3 and makes an angle of 58 degrees to the positive x- axis ⚫ u has a magnitude of 5 and makes an angle of 119 degrees to the positive x- axis ⚫ vector v is located in between u and w a) Draw a diagram of the three vectors placed tail-to-tail at the origin of an x-y plane. b) If possible, find w × (ū+v) Support your answer mathematically or a with a written explanation. c) If possible, find v. (ū⋅w) Support your answer mathematically or a with a written explanation. d) If possible, find u. (vxw) Support your answer mathematically or a with a written explanation. Note: in this question you can work with the vectors in geometric form or convert them to algebraic vectors.arrow_forwardQuestion 3 (6 points) u, v and w are three coplanar vectors: ⚫ w has a magnitude of 10 and points along the positive x-axis ⚫ v has a magnitude of 3 and makes an angle of 58 degrees to the positive x- axis ⚫ u has a magnitude of 5 and makes an angle of 119 degrees to the positive x- axis ⚫ vector v is located in between u and w a) Draw a diagram of the three vectors placed tail-to-tail at the origin of an x-y plane. b) If possible, find w × (u + v) Support your answer mathematically or a with a written explanation. c) If possible, find v. (ū⋅ w) Support your answer mathematically or a with a written explanation. d) If possible, find u (v × w) Support your answer mathematically or a with a written explanation. Note: in this question you can work with the vectors in geometric form or convert them to algebraic vectors.arrow_forward39 Two sides of one triangle are congruent to two sides of a second triangle, and the included angles are supplementary. The area of one triangle is 41. Can the area of the second triangle be found?arrow_forward
- Pls help ASAP botharrow_forwardK Find all values x = a where the function is discontinuous. For each value of x, give the limit of the function as x approaches a. Be sure to note when the limit doesn't exist. x-7 p(x) = X-7 Select the correct choice below and, if necessary, fill in the answer box(es) within your choice. (Use a comma to separate answers as needed.) OA. f is discontinuous at the single value x = OB. f is discontinuous at the single value x= OC. f is discontinuous at the two values x = OD. f is discontinuous at the two values x = The limit is The limit does not exist and is not co or - ∞. The limit for the smaller value is The limit for the larger value is The limit for the smaller value is The limit for the larger value does not exist and is not c∞ or -arrow_forwardK x3 +216 complete the table and use the results to find lim k(x). If k(x) = X+6 X-6 X -6.1 -6.01 - 6.001 - 5.999 - 5.99 -5.9 k(x) Complete the table. X -6.1 -6.01 - 6.001 - 5.999 - 5.99 - 5.9 k(x) (Round to three decimal places as needed.) Find the limit. Select the correct choice below and, if necessary, fill in the answer box within your choice.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning