
Concept explainers
In Exercises 6—10, we consider the phenomenon of radioactive decay which, from experimentation, we know behaves according to the law:
The rate at which a quantity of a radioactive isotope decays is proportional to the amount of the isotope present. The proportionality constant depends only on which radioactive isotope is used.
7. The half-life of a radioactive isotope is the amount of time it takes for a quantity of radioactive material to decay to one-half of its original amount.
(a) The half-life of Carbon 14 (C-14) is 5230 years. Determine the decay-rate pa-rameter
(b) The half-life of Iodine 131 (I-131) is 8 days. Determine the decay-rate param-eter for I-131.
(c) What are the units of the decay-rate parameters in parts (a) and (b)?
(d) To determine the half-life of an isotope, we could start with atoms of the isotope and measure the amount of time it takes 500 of them to decay, or we could start with 10,000 atoms of the isotope and measure the amount of time it takes 5000 of them to decay. Will we get the same answer? Why?

Trending nowThis is a popular solution!

Chapter 1 Solutions
Differential Equations (with DE Tools Printed Access Card)
- Please explain how come of X2(n).arrow_forwardNo chatgpt pls will upvotearrow_forwardFind all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forward
- https://www.hawkeslearning.com/Statistics/dbs2/datasets.htmlarrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.arrow_forward
- Let A = {a, b, c, d}, B = {a,b,c}, and C = {s, t, u,v}. Draw an arrow diagram of a function for each of the following descriptions. If no such function exists, briefly explain why. (a) A function f : AC whose range is the set C. (b) A function g: BC whose range is the set C. (c) A function g: BC that is injective. (d) A function j : A → C that is not bijective.arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective. why?(b) Determine if f is surjective. why?(c) Based upon (a) and (b), is f bijective? why?arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective.(b) Determine if f is surjective. (c) Based upon (a) and (b), is f bijective?arrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

